Cosmological Phase Transitions in Composite Higgs Models

- Kohei Fujikura (Kobe U. \rightarrow University of Tokyo Komaba) In collaboration with
- - Yuichiro Nakai (T.D. Lee institute)
 - Ryosuke Sato (Osaka University)
 - Yaoduo Wang (T.D. Lee institute)

Higgs as a Probe of New Physics 2023 (HPNP2023 06/06)

[arXiv:2306.01305]

"Higgs as a Probe of New Physics (2023)"

In this talk, I assume new physics = composite Higgs (Please accept this assumption for 15 minutes.)

Introduction: Composite Higgs model

SM-like Higgs boson = pseudo-Nambu-Goldstone-Boson (pNGB) of global symmetry breaking, $G \rightarrow H$. [D. B. Kaplan, H. Georgi (1984)] [D. B. Kaplan, et al. (1984)]

• $SU(2)_W \times U(1)_Y \subset H$

• $G \rightarrow H$ triggered by a strong dynamics

A composite Higgs model provides a solution to the hierarchy problem. ("No elementary scalar field")

^{*i*} 10 TeV (Composite scale) — $G \rightarrow H$ symmetry breaking

[M. J. Dugan, et al. (1985)]

100 GeV Electroweak symmetry breaking

Introduction: Cosmological Phase Transitions

Production of Gravitational Wave

[Kosowski et al. (1992)] [Hindmarsh, et al. (2014)] [Kamionkowski, et al. (1993)]

Production of Dark Matters 2.

[Witten (1992), Y. Bai (2018)]

Primordial Black hole formation 3.

(See interesting talks in this session.)

Cosmological first order phase transition \Rightarrow Formation of bubbles

Question: What are order of phase transitions in composite Higgs models?

 $\langle \phi \rangle$

Phase Transitions in Composite Higgs There can be three phase transitions:

- Phase transition associated with confinement
- Phase transition associated with new global symmetry breaking, $G \rightarrow H$.
- The Electroweak Phase Transition 3.

In this talk, I discuss order of the $G \rightarrow H$ phase transition.

Summary of this talk

I argue that if

- The argument of universality and ε -expansion are qualitatively good,
- Effects of explicit breaking of global symmetry G are negligible,
 - first-order $G \rightarrow H$ phase transitions are favored in some composite Higgs models.
- I am going to explain the argument of universality and ε -expansion.

Details of Phase Transition Dynamics

Effective Field Theory (EFT) of Phase Transitions Assumption (The argument of universality): Phase transition dynamics is dominated by the long-wavelength fluctuations by an order parameter, Φ .

$S^1: \tau \sim \tau + 1/T$ *T* : cosmic temperature

3D EFT of phase transition: $S_3[\Phi(\boldsymbol{x}), T]$

We may start from the effective field theory (EFT) of the order parameter in three spatial dimension.

Minimal Composite Higgs Models • Consider phase transition associated with $O(N) \rightarrow O(N-1)$

(Minimal composite Higgs)

• Effective theory:

$$S_E = \int d^3 \mathbf{x} \left[\frac{1}{2} \partial_i \Phi_a \partial_i \Phi_a + \frac{1}{2} m^2(T) \Phi_a \Phi_a + \frac{\lambda_3}{4} (\Phi_a \Phi_a)^2 + \cdots \right]$$

High T: $m^2(T > T_C) > 0 \Rightarrow \langle \Phi_a \rangle = 0$: Symmetric Phase Low T: $m^2(T < T_C) < 0 \Rightarrow \langle \Phi_a \rangle \neq 0$: Broken Phase

• Without fluctuations, a 2'nd order transition takes place at $m(T_C) = 0$.

[N=5 is proposed by K. Agashe et al. (2005)]

 Φ_a ($a = 1, 2, \dots, N$): Order parameter (fundamental representation of O(N)).

Infra-red (IR) fluctuation and *\varepsilon*-expansion

- In three dimension, a fluctuation of Φ at critical point $m^2(T_C) = 0$ is non-perturbatively large.
- ε -expansion: Compute the renormalization group equation in 4ε dimension (instead of 3), and finally takes the extrapolation, $\varepsilon \to 1$.

$$\beta_{\lambda_3} \equiv \mu \frac{\partial \lambda_3}{\partial \mu} = -\epsilon \lambda_3 + (N+8) \frac{\lambda_3^2}{8\pi^2}$$

of susceptibility \Rightarrow 2'nd order phase transition

IR stable fixed-point

K.G. Wilson and M.E. Fisher (1972), E. Brezin et al. (1973)

• Divergence of correlation length at the IR fixed-point \Rightarrow Divergence

• Composite Higgs model: $O(N) \rightarrow O(N - M) \times O(M)$

 $\Phi_{ab} \to V \Phi V^T, V \in O(I)$ • Effective Action:

$$S_E = \int d^3 \boldsymbol{x} \left[\frac{1}{2} \text{Tr} \left(\partial_i \Phi \right)^2 + \frac{1}{2} m^2 (T) \text{Tr} \left(\Phi^2 \right) + \frac{u}{4!} \left(\text{Tr} \Phi^2 \right)^2 + \frac{v}{4!} \text{Tr} \left(\Phi^4 \right) \right]$$

- What happens when we include fluctuation?

Phase transition: $O(N) \rightarrow O(N - M) \times O(M)$

[N=9 and M=4 proposed by S. Chang (2013)]

Order parameter: Φ_{ab} in two-index symmetric traceless representation under O(N)

$$N), \qquad \mathrm{Tr}\,\Phi = 0, \Phi = \Phi^T$$

Without fluctuations, a second-order phase transition takes place.

No stable IR fixed points \Rightarrow fluctuation-induced first-order phase transition

Results (*\varepsilon*-expansion)

Good News: predictions are largely model-independent

$\mathcal{G} ightarrow \mathcal{H}$	PT dynamics	Model	Orde
$SO(N) \to SO(N-1)$	E. Brezin et al. (1973)	$N = 5 {\rm K. Agashe \ et} {\rm al. (2005)}$	2'nd
	P. H. Ginsparg (1980)	N = 9 E. Beltuzzo et al. (2013)	2'nd
$SO(9) \rightarrow SO(5) \times SO(4)$	This work	S. Chang (2013)	1'st
$SU(2N) (U(2N)) \rightarrow Sp(2N)$		$N = 2^{\text{J. Barnald et al. (2014)}}$	anoma
	J. Wirstam (2000)	$N = 3^{\text{E. Katz et al. (2005)}}_{\dots \text{ and many works}}$	1'st
$SU(N)\left(U(N)\right) \to SO(N)$	F. Basile et al. (2005)	N = 5 N. Arkani-Hamed et al. (2005)	1'st
			1 0

Combining important related works, we can make lists of order of $G \rightarrow H$ phase transitions in various composite Higgs models.

- Composite Higgs models may lead to additional two phase transitions associated with global symmetry breaking $G \rightarrow H$ and confinement.
- Assuming the argument of universality, phase transition dynamics near the critical temperature may be captured by the effective theory of order parameter.
- Some composite Higgs models lead to first-order $G \rightarrow H$ phase transitions if the argument of universality and ε -expansion are qualitatively good.
- In our paper, we also discuss confinement phase transition and $G \rightarrow H$ phase transition in a specific UV-complete Higgs model.

Conclusion and Comment

Thank you!