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Experimental hints for new heavy scalars



Scenario 1: mA = 610 
GeV and mH = 290 GeV, 
with pp ➝ A ➝ ZH, 
followed by H ➝ bb
and Z ➝ lepton pairs

Left-hand plots: 
expected upper limits

Right-hand plots:
Observed upper limits 
(suggesting an excess 
of events)



Scenario 2: mA = 400 GeV, 
with pp ➝ A ➝ 𝜏+𝜏-



Scenario 2: 
mA = 400 GeV, 
with pp ➝ A ➝ t t



Figure taken from: T. Biekötter, A. Grohsjean, S. Heinemeyer, C. Schwanenberger, 
and G. Weiglein, Eur. J. Phys. C 82, 483 (2022) 



A quick review of the 2HDM

The 2HDM consists of two Y = 1 scalar doublet fields Φ1 and

Φ2. The kinetic energy terms are invariant under Φi → UijΦj

(i, j ∈ {1, 2} with an implicit sum over j), where U is a 2 × 2

unitary matrix, which constitutes a change of scalar field basis.

If no additional symmetries are present, the choice of basis is

arbitrary. Only basis-invariant quantities are physical. This

motivates the introduction of the Higgs basis {H1,H2} where

〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0, where v ≃ 246 GeV.

The Higgs basis is unique up to a phase rotation of H2.



In the Higgs basis, the scalar potential is:

V = Y1H†
1H1 + Y2H†

2H2 + [Y3e
−iηH†

1H2 + h.c.] +

1
2Z1(H†

1H1)
2 + 1

2Z2(H†
2H2)

2 + Z3(H†
1H1)(H†

2H2) + Z4(H†
1H2)(H†

2H1)

+
{

1
2Z5e

−2iη(H†
1H2)

2 +
[

Z6e
−iη(H†

1H1) + Z7e
−iη(H†

2H2)
]

H†
1H2 + h.c.

}

.

The phase e−iη reflects the nonuniqueness of the Higgs basis.

Under a change of basis, Φi → UijΦj, the parameters Y1, Y2 and

Z1, . . . Z4 are invariant whereas

[Y3, Z6, Z7, e
iη] → (det U)−1[Y3, Z6, Z7, e

iη] ,

Z5 → (det U)−2Z5 .

The minimization of the scalar potential in the Higgs basis yields

Y1 = −1
2Z1v

2 , Y3 = −1
2Z6v

2 .



Scalar mass eigenstates

The 3× 3 neutral scalar squared mass matrix is:

M2 = v2









Z1 Re(Z6e
−iη) − Im(Z6e

−iη)

Re(Z6e
−iη) 1

2

[

Z34 + Re(Z5e
−2iη)

]

+ Y2/v
2 −1

2 Im(Z5e
−2iη)

− Im(Z6e
−iη) −1

2 Im(Z5e
−2iη) 1

2

[

Z34 − Re(Z5e
−2iη)

]

+ Y2/v
2









with respect to the {
√
2 ReH0

1 − v,
√
2 ReH0

2,
√
2 ImH0

2} basis,

where Z34 ≡ Z3 + Z4.

Diagonalize M2 to obtain the scalar masses,

RM2RT = diag (m2
1 , m

2
2 , m

2
3) ,

where R ≡ R12R13R23 is the product of three rotation matrices

parametrized by three basis-invariant angles, θ12, θ13 and θ23,

respectively.



Denoting the neutral scalar mass eigenstates by hk (k = 1, 2, 3),

H1 =









G+

1√
2

(

v + iG+
3
∑

k=1

qk1hk

)









, eiθ23H2 =









H+

1√
2

3
∑

k=1

qk2hk









.

where the basis-invariant quantities qkℓ depend on θ12 and θ13 as

indicated in the table below, where cij ≡ cos θij and sij ≡ sin θij.

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

Without loss of generality, one can set θ23 = 0.



Higgs-fermion Yukawa couplings

After determining the quark mass eigenstate fields and the scalar mass

eigenstate fields, the resulting 2HDM Yukawa couplings are

−LY = U

{

MU

v
qk1 +

1
√
2

[

q∗
k2 ρ

UPR + qk2 ρ
U†PL

]

}

Uhk

+D

{

MD

v
qk1 +

1
√
2

[

qk2 ρ
D†PR + q∗

k2 ρ
DPL

]

}

Dhk

+E

{

ME

v
qk1 +

1
√
2

[

qk2 ρ
E†

PR + q
∗
k2 ρ

E
PL

]

}

Ehk

+

{

U
[

Kρ
D†

PR − ρ
U†

KPL

]

DH
+
+ Nρ

E†
PREH

+
+ h.c.

}

,

summed over k ∈ {1, 2, 3}, where PR,L ≡ 1
2(1±γ5), K is the CKM matrix, and

the mass-eigenstate quark and lepton fields are D = (d, s, b)T, U ≡ (u, c, t)T,

E = (e, µ, τ)T, and N = (νe, νµ, ντ)
T, with corresponding diagonal mass

matrices MF and complex invariant Yukawa matrices ρF (F = U,D,E),



The Aligned 2HDM (A2HDM)

The A2HDM posits that the Yukawa matrices ρF are proportional

to the corresponding fermion mass matrix MF .
∗ We define the

basis-invariant flavor-alignment parameters aF via,

ρF =

√
2aFMF

v
, for F = U,D,E.

The resulting Yukawa couplings are:

−LY =
1

v
UMU

3
∑

k=1

{

qk1 + q∗
k2a

UPR + qk2a
U∗PL

}

Uhk

+
1

v

∑

F=D,E

{

FMF

3
∑

k=1

(

qk1 + qk2a
F∗PR + q∗

k2a
FPL

)

Fhk

}

+

√
2

v

{

U
[

a
D∗

KMDPR − a
U∗

MUKPL

]

DH
+
+ a

E∗
NMEPREH

+
+ h.c.

}

.

∗A. Pich and P. Tuzon, Phys. Rev. D 80, 091702 (2009).



Special cases of the A2HDM

The A2HDM as formulated above is not radiatively stable. There

are three possible approaches.

• Treat the A2HDM phenomenologically and let experiment

decide the structure of the Yukawa sector.

• Impose the A2HDM conditions at a UV scale and then use RG

evolution to generate FCNCs mediated by neutral scalars at the

EW scale which may be consistent with low energy data.

• Impose a symmetry of the Higgs Lagrangian (which may be

softly broken) to naturally eliminate tree-level FCNCs mediated

by neutral scalars.



Types I, II, X and Y Yukawa Lagrangians

Impose a Z2 symmetry on the dimension-four terms of the Higgs

Lagrangian. This defines the Φ-basis, where the terms

V ⊃ (λ6Φ
†
1Φ1 + λ7Φ

†
2Φ2)Φ

†
1Φ2 + h.c.

are absent after imposing the discrete symmetry Φ1 → +Φ1,

Φ2 → −Φ2. In the Φ-basis,

〈Φ0
1〉 = v cosβ/

√
2 , 〈Φ0

2〉 = eiξv sin β/
√
2 ,

which defines the angle β and the phase angle ξ. Due to the Z2

symmetry, these parameters are now physical.



There exists a scalar field basis where λ6 = λ7 = 0 if and only if

the following two conditions are satisfied:†

(Z1 − Z2)
[

Z34|Z67|2 − Z2|Z6|2 − Z1|Z7|2 − Z12Re(Z
∗
6Z7)

]

+Re(Z∗
5Z

2
67)− 2|Z67|2

(

|Z6|2 − |Z7|2
)

= 0 ,

(Z1 − Z2) Im(Z∗
6Z7) + Im

(

Z∗
5Z

2
67

)

= 0 ,

where Zij ≡ Zi + Zj. The Type I, II, X, and Y Yukawa couplings

arise after imposing the Z2 charges listed in the table below.

Φ1 Φ2 UR DR ER UL, DL, NL, EL

Type I + − − − − +

Type II + − − + + +

Type X + − − − + +

Type Y + − − + − +

†See R. Boto, T.V. Fernandes, H.E. Haber, J.C. Romao, and J.P. Silva, Phys. Rev. D 101, 055023 (2020).



Type I: ρF = ei(ξ+η)
√
2MF cotβ/v , where F = U,D,E,

Type II: ρU = ei(ξ+η)
√
2MU cotβ/v , ρD,E = − ei(ξ+η)

√
2MD,E tan β/v ,

Type X: ρU,D = ei(ξ+η)
√
2MU,D cotβ/v , ρE = − ei(ξ+η)

√
2ME tanβ/v ,

Type Y: ρU,E = ei(ξ+η)
√
2MU,E cotβ/v , ρD = − ei(ξ+η)

√
2MD tanβ/v .

The Type-I, II, X, and Y 2HDMs are special cases of the A2HDM,
where the corresponding complex flavor-alignment parameters are:

1. Type-I: aU = aD = aE = ei(ξ+η) cotβ.

2. Type-II: aU = ei(ξ+η) cotβ and aD = aE = −ei(ξ+η) tanβ.

3. Type-X: aU = aD = ei(ξ+η) cot β and aE = −ei(ξ+η) tan β.

4. Type-Y: aU = aE = ei(ξ+η) cotβ and aD = −ei(ξ+η) tan β.



The CP-conserving 2HDM

If the scalar potential and vacuum are CP-conserving, then there

exists a real Higgs basis in which all Higgs basis scalar potential

parameters are real. Thus, we set s13 = 0, c13 = 1 and eiη = ±1.

In particular, eiη changes sign under H2 → −H2. One can

identify‡

ε ≡ eiη =











sgnZ6 , if Z6 6= 0,

sgnZ7 , if Z6 = 0 and Z7 6= 0.

‡If Z6 = Z7 = 0, then the sign of Z5 is no longer invariant with respect to transformations that preserve the

real Higgs basis (since the sign of Z5 changes under H2 → ±iH2). In this case, it would be more appropriate

to define ε ≡ e2iη = sgnZ5.



To make contact with the standard notation of the CP-conserving

2HDM, under the assumption that the lighter of the two

neutral CP-even Higgs bosons is SM-like, we make the following

identifications:

h = h1 , H = −εh2 , A = εh3 , H± → εH± ,

where the neutral CP-odd Higgs mass eigenstate is related to the

Higgs basis fields by A = ε
√
2 ImH0

2 and




H

h



 =





cβ−α −sβ−α

sβ−α cβ−α









√
2 Re H0

1 − v

ε
√
2Re H0

2



 ,

where we have identified:

c12 = sβ−α , s12 = −ε cβ−α .



By convention, we choose 0 ≤ β − α ≤ π. Given the values of

β − α and the masses of h, H , A and H±, four of the seven real

Higgs basis parameters Zi are determined

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z4v
2 = m2

hc
2
β−α +m2

Hs2β−α +m2
A − 2m2

H± ,

Z5v
2 = m2

hc
2
β−α +m2

Hs2β−α −m2
A ,

|Z6|v2 = (m2
H −m2

h)sβ−α|cβ−α| ,

where εcβ−α = −|cβ−α| ≤ 0.§

In the CP-conserving A2HDM, the flavor alignment parameters

are real.
§Note that both ε and cβ−α change sign under H2 → −H2, whereas εcβ−α is invariant.



The Yukawa Lagrangian is given by:

−LY =
1

v

∑

F=U,D,E

FMF

[

sβ−α − aF |cβ−α|
]

Fh

−1

v

∑

F=U,D,E

ε FMF

[

|cβ−α|+ aFsβ−α

]

FH

− i

v

∑

F=U,D,E

εF ε aF FMFγ5FA

+

√
2

v
ε

{

U
[

aDKMDPR − aUMUKPL

]

DH+ + aENMEPREH+ + h.c.

}

,

where we have introduced the notation,

εF =











+1 for F = U ,

−1 for F = D,E .



The CP-conserving Type-I, II, X and Y 2HDMs are special cases

of the A2HDM:

Type-I: aU = aD = aE = ε cot β.

Type-II: aU = ε cotβ and aD = aE = −ε tan β.

Type-Y: aU = aE = ε cot β and aD = −ε tan β.

Type-X: aU = aD = ε cot β and aE = −ε tan β.

REMARK: In the 2HDM literature, the Φ-basis scalar fields are

rephased such that ξ = 0 (i.e., the vevs are real and nonnegative),

in which case ei(ξ+η) = ε and tan β ≡ 〈Φ0
2〉/〈Φ0

1〉 ≥ 0. Then

cβ−α is promoted to a physical parameter and the sign of ε is

fixed such that εcβ−α ≤ 0.



To implement the CP-conserving Type-I, II, X and Y 2HDM, there

must exist a real Φ-basis such that λ6 = λ7 = 0. Such a basis

exists if TZ2 = 0, where

TZ2 ≡
∣

∣(Z1 − Z2)[Z1Z7 + Z2Z6 − (Z3 + Z4 + Z5)(Z6 + Z7)]

+2(Z6 + Z7)
2(Z6 − Z7)

∣

∣ .

Scanning the CP-conserving A2HDM parameter space

The following parameters govern the CP-conserving A2HDM

parameter space:

mh,mH,mA,mH±, |cβ−α|, Z2, Z3, Z7, a
U , aD, aE.

Note that tan β is meaningful only in the special cases of Types I,

II, X, and Y.





Theoretical and Experimental Constraints:

1. The scalar potential is bounded from below

2. Tree-level unitarity and perturbativity

3. The lightest Higgs scalar is SM-like and its properties are consistent with the 
current Higgs signal strength data

4. Precision electroweak constraints on the oblique parameters S and T

5. Heavy flavor constraints (most significant are b ➝ s γ and ∆MBs)✢

6. Searches for new elementary scalar states at the LHC

------------------------------------
✢ We use NLO results provided by T. Enomoto and R. Watanabe, JHEP 05, 002 (2016).  We compared our results to
     A. Penuelas and A. Pich, JHEP 12, 084 (2017).



All points shown above satisfy |δBR(b ➝ s γ)| ≤ 4 × 10 −5.



Scenario 1: The A2HDM scan and implications for Types I, II, X and Y

Types II and Y ruled out due 
to b ➝ s γ constraints.   
Dedicated Type I and Type X 
scans eliminate Type X but 
allow Type I.



Scenario 1: Type-I 2HDM benchmark point





Scenario 1: generic A2HDM benchmark point

One can distinguish this benchmark point from 
Type-I by searching for gg ➝ bbH ➝ bbbb.





Scenario 2: A2HDM scan



Among the viable A2HDM points, none of the Types I, II, X, and Y 
Yukawa coupling scenarios survive. 



Scenario 2: 
generic 
A2HDM 
benchmark 
point

Promising channels for 
future LHC discoveries 
include bbH production 
followed by H ➝ bb, tt.



Parting messages
Ø If evidence for new heavy scalars emerges, the 2HDM provides a robust 

framework for interpretation.

ØHowever, beware of over-constraining the 2HDM framework.

ØAlthough Types I, II, X, and Y Yukawa couplings are theoretically favored, a more 
general set of (approximately) flavor-aligned Yukawa coupling can satisfy the 
experimental FCNC constraints.

  
ØUltimately, it is up to experimental observations to dictate the underlying 

structure of the Higgs-fermion Yukawa interactions.

Ø Scenario 2 provides an example of a case where the observations of a new heavy 
scalar is incompatible with Types I, II, X, and Y Yukawa couplings, but can be 
accommodated in a more generic A2HDM framework. 



Backup slides









Origin of the ei(ξ+η) factor

The alignment parameters aF are basis-invariant quantities, which

have been written above in terms of the Φ-basis parameters.

Consider a new Φ′-basis that is related to the Φ-basis via Φ′ = UΦ,

where

U =





0 e−iξ

eiζ 0



 .

In the Φ′-basis, the roles of Φ1 and Φ2 are interchanged with

respect to the Φ-basis. Thus, the softly broken Z2 symmetry is

also manifestly realized in the Φ′-basis, where the Z2 charges of

Φ1 and Φ2 specified in table of Z2 charges are interchanged.



We shall refer to the corresponding Yukawa couplings in the

Φ′-basis as Type I′, Type II′, etc. In particular, in light of




sβ

cβe
iζ



 = U





cβ

sβe
iξ



 ,

we conclude that β′ = 1
2π − β and ξ′ = ζ. Moreover, in light of

eiη
′
= (det U)−1eiη and detU = −ei(ζ−ξ), it follows that

ei(ξ
′+η′) = −ei(ξ+η).

Thus, with respect to the parameters of the Φ′-basis, the

expressions for aF are modified by interchanging tanβ ↔ cotβ

and multiplying the resulting expressions by −1. But these are

precisely the results for aF that would have been obtained by

employing the Type-I′ and Type-II′ Yukawa couplings.


