

"Higgs as a Probe of New Physics 2023"

5.-9. June 2023, Osaka University, Japan

Testing Higgs Effective Theories

June 6, 2023 Kohsaku Tobioka [Tobi] Florida State University, KEK

Work in progress with Shameran Mahmud

Florida State University

• I'm at Florida State U, not Univ of Florida. [I know it's confusing []

KONSAKU TODIOKA, FIONUA STALE UNIVERSILY

- Willing to host JSPS fellows/visitors! [just write to ktobioka @ fsu.edu]

BSM theory/ Precision calc., Amplitude together with HEP experiments

Try to get the most out of LHC data

• LHC data is consistent with SM over multiple energy scales, sort of beauty of SM.

Kohsaku Tobioka, Florida State University

Try to get the most out of LHC data

- LHC data is consistent with SM over multiple energy scales, sort of beauty of SM.
- The SM is not satisfactory at all; Higgs sector/EWSB is very ad hoc.
- "Higgs as a probe of new physics" to "get the most out of the data"
 - Single Higgs couplings
 - E.g. $H \rightarrow cc$ coupling, $VH \rightarrow cc$ now operated at both CMS/ATLAS, competitive sensitivities!! Talks by Ganguly, Sun Perez, Soreq, Stamou, KT ['15]
- - New idea $J/\Psi+cc$. T. Han's talk
 - Higgs self(cubic)-coupling is the next major challenge.

 - Talks by Ganguly, Sun, Braathen, De Curtis, Moretti, Wang, Azevedo, Wong. ... Also pointing out exotic channels motivated by theory. Talk by Song ...

3

Try to get the most out of LHC data

- LHC data is consistent with SM over multiple energy scales, sort of beauty of SM.
- The SM is not satisfactory at all; Higgs sector/EWSB is very ad hoc.
- "Higgs as a probe of new physics" to "get the most out of the data"
 - Single Higgs couplings
 - E.g. $H \rightarrow cc$ coupling, $VH \rightarrow cc$ now operated at both CMS/ATLAS, competitive sensitivities!! Talks by Ganguly, Sun Perez, Soreq, Stamou, KT ['15]
- - New idea $J/\Psi+cc$. T. Han's talk
 - Higgs self(cubic)-coupling is the next major challenge.
 - Talks by Ganguly, Sun, Braathen, De Curtis, Moretti, Wang, Azevedo, Wong. ...
 - Also pointing out exotic channels motivated by theory. Talk by Song ...

What else? I take Higgs Effective Field Theory (HEFT)

3

What is Higgs EFT? HEFT \supset SMEFT \supset SM

e.g. definite cutoff $\sim 4\pi v$ unlike in SMEFT where NP can decouple.

Kohsaku Tobioka, Florida State University

- EW linearly realized. H as SU(2) doublet and expand like |H⁺H|ⁿ...
- EW is non-linearly realized. SU(3)c x U(1)_{EM} is manifest. h, h^2 , h^3 ...
- In my talk let me call one excluding SMEFT as HEFT.
- HEFT seems to have more freedom, but actually has constrained structure,

What models lead to HEFT?

(i) New heavy states acquire the mass dominantly from the Higgs VEV.

(ii) New heavy states participates in the electroweak symmetry breaking.

What models lead to HEFT?

(i) New heavy states acquire the mass dominantly from the Higgs VEV.

Which EFT requires HEFT over SMEFT? (A) Geometric formulation of EFT and curvature conditions [arXiv:1511.00724] [arXiv:1605.03602] Alonso, Jenkins & Manohar; [arXiv:2008.08597] Cohen, Craig, Lu, Sutherland

The EFT would have **non-analyticities at H→0**

Kohsaku Tobioka, Florida State University

(ii) New heavy states participates in the electroweak symmetry breaking.

(B) SU(2)_Lx U(1)_Y invariant form: $\mathscr{L}(h) \to \mathscr{L}(\sqrt{H^{\dagger}H} - v_{EM})$ where **H** is weak doublet. Falkowski&Rattazzi [1902.05936]

 $\left(\partial\sqrt{H^{\dagger}H}\right)^{2} \qquad \left(\sqrt{H^{\dagger}H}\right)^{n} \qquad \left(H^{\dagger}H\right)^{2}\log(H^{\dagger}H)$

Tree-level HEFT: singlet example

 SM gauge singlet S $\mathcal{L}_{\rm UV} = \dot{\ell}$

$V = -\mu_{H}^{2} |H|^{2} +$

Kohsaku Tobioka, Florida State University

*For positive S mass leading to Sc=0, non-analyticities appear at loop $(H^{\dagger}H)^2 \log(H^{\dagger}H)$

Cohen, Craig, Lu, Sutherland

$$\left. \partial H \right|^2 + rac{1}{2} (\partial S)^2 - V$$

Negative
 $\lambda_H |H|^4 + rac{1}{2} \left(m^2 + \kappa |H|^2 \right) S^2 + rac{1}{4} \lambda_S S^4$

Tree-level HEFT: singlet example

- SM gauge singlet S $\mathcal{L}_{\rm UV} = \dot{\ell}$
 - $V = -\mu_{H}^{2} |H|^{2} +$
- If $|\kappa| v_{\rm EM} > |m|$, EFT should HEF EoM yields $S_{\mathbf{c}} = \left(\frac{m^2 + \kappa |H|^2}{-\lambda_S}\right)$
- Substitute Sc.. $\frac{1}{2}(\partial S)^2 = \frac{1}{2\lambda_s} \left(\partial \sqrt{-r} \right)^2$

Kohsaku Tobioka, Florida State University

*For positive S mass leading to Sc=0, non-analyticities appear at loop $(H^{\dagger}H)^2 \log(H^{\dagger}H)$

Cohen, Craig, Lu, Sutherland

$$\begin{split} \partial H |^2 &+ \frac{1}{2} (\partial S)^2 - V \\ & \text{Negative} \\ \lambda_H |H|^4 &+ \frac{1}{2} \left(m^2 + \kappa |H|^2 \right) S^2 + \frac{1}{4} \lambda_S S^4 \,. \end{split}$$
FT, otherwise SMEFT expansion .
$$\begin{aligned} & \stackrel{2}{-} \\ & \stackrel{1/2}{-} + \mathcal{O}(\partial^2) \end{aligned}$$

$$\frac{1}{m^2 - \kappa^2 |H|^2} \right)^2$$

Non-analytic if Higgs VEV dominates S mass

Tree-level HEFT: singlet example

- SM gauge singlet S $\mathcal{L}_{\rm UV} = \dot{c}$
 - $V = -\mu_{H}^{2} |H|^{2} +$
- If $|\kappa| v_{\rm EM} > |m|$, EFT should HEF EoM yields $S_{\mathbf{c}} = \left(\frac{m^2 + \kappa |H|^2}{-\lambda_S}\right)$
- Substitute Sc.. $\frac{1}{2}(\partial S)^2 = \frac{1}{2\lambda_s} \left(\partial \sqrt{-\frac{1}{2}} \right)^2$
- With m=0, singlet mass= $(-2\kappa)^{1/2}v$

Kohsaku Tobioka, Florida State University

*For positive S mass leading to Sc=0, non-analyticities appear at loop $(H^{\dagger}H)^2 \log(H^{\dagger}H)$

Cohen, Craig, Lu, Sutherland

$$\partial H|^{2} + \frac{1}{2} (\partial S)^{2} - V$$
Negative
$$\lambda_{H}|H|^{4} + \frac{1}{2} (m^{2} + \kappa |H|^{2}) S^{2} + \frac{1}{4} \lambda_{S} S^{4}.$$
FT, otherwise SMEFT expansion .
$$\int_{-}^{2} \int_{-}^{1/2} + \mathcal{O}(\partial^{2})$$

$$\overline{-m^{2} - \kappa^{2}|H|^{2}} \int_{-}^{2} \qquad \text{Non-analytic if Higgs VEV}$$

$$\int_{-} \kappa \sim 4\pi, m_{s} = (8\pi)^{1/2} \vee \longrightarrow \text{EFT cutoff} \sim 4\pi \vee$$

 $\sim v \sim 0$, m_s~0 \longrightarrow Non-analytic EFT at H=0

Exploring HEFT

- Vacuum stability
- Single Higgs couplings
- Higgs self-coupling
- Perturbative unitarity

Experimental scope

 \checkmark on-going, O(10%) precision

 \checkmark on-going, O(5) precision

Not established.

Kohsaku Tobioka, Florida State University

. . .

Suppose some non-analyticities in EFT.

<u>Generic expectation</u>

Deviation expected in the singlet model. If non-analyticities in potential, no deviation.

Deviation expected

Strongly coupled below $4\pi v \sim 3$ TeV. in Higgs/G scatterings

*G: NG bosons, $\sim Z_L/W_L$

7

Perturbative unitarity of HEFT

- What has been discussed

 - 2-to-n: $GG \rightarrow 3h$ or more, cross section grows with energy.

Kohsaku Tobioka, Florida State University

Falkowski&Rattazzi ['19]

- 2-to-2: GG \rightarrow hh can be safe [cross section not growing with energy] Z. Dong, T. Ma, J. Shu, Z. Zhou; H. Liu, T. Ma, Y. Shadmi, M. Waterbury

Similar observation by Chang, Luty

See also S. Kanemura, R. Nagai; R. Nagai, M. Tanabashi, K. Tsumura, Y. Uchida

Perturbative unitarity of HEFT

- What has been discussed

 - 2-to-n: $GG \rightarrow 3h$ or more, cross section grows with energy.

Question: Not easy even at future colliders.

Falkowski&Rattazzi ['19]

- 2-to-2: GG \rightarrow hh can be safe [cross section not growing with energy] Z. Dong, T. Ma, J. Shu, Z. Zhou; H. Liu, T. Ma, Y. Shadmi, M. Waterbury

Similar observation by Chang, Luty

See also S. Kanemura, R. Nagai; R. Nagai, M. Tanabashi, K. Tsumura, Y. Uchida

To observe the energy growing behavior at collider, is $GG \rightarrow nxh$ practical?

Replacing 2h with 2G

• E.g.
$$\left(\sqrt{H^{\dagger}H}\right)^n = \left((h+v)^2 + G^2\right)^{n/2}$$
,

So far we find

*This tendency is more sharp in the singlet model giving $\left(\partial \sqrt{H^{\dagger}H}\right)^2$ We find: $A(2G \rightarrow 2G+1h) \gg A(2G \rightarrow 3h)$.

Kohsaku Tobioka, Florida State University

• If $2G \rightarrow 3h$ scattering is interesting, so is $2G \rightarrow 2G+1h$. Almost same discussion.

amplitudes of $2G \rightarrow 2G+1h$ grow equally or faster than ones of $2G \rightarrow 3h$.

WW→WWh more practical at colliders

- WW→3h is hard, because of higgs decay modes. 60% is h→2b-jets. (2%:2γ)
 Even 2h is very challenging (why h-cubic is poorly constrained).
- W boson has a significant BR to leptons. (WWW was measured at LHC) Also Z boson is better than h.

[final state AB (in hAB)	possible measured decays	BR products
h+	hh	$(b\overline{b})(\gamma\gamma)$	1.31×10^{-3}
		$(\gamma\gamma) \ (\gamma\gamma)$	5.20×10^{-6}
	ZZ	$(l^+l^-)(l^+l^-)$	1.02×10^{-2}
	W^+W^-	$(l^+ u)(l^- u)$	0.106

- We gain signal statistics by ~100 due to practical decay patterns on top of A(2G→2G+1h) > A(2G→3h)
- Quantitative sensitivities to be studied.

Kohsaku Tobioka, Florida State University

