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• I’m at Florida State U, not Univ of Florida. 
[I know it’s confusing !]

Tallahassee 
FSU

Gainesville 
U of Florida

• Willing to host JSPS fellows/visitors! 
[just write to ktobioka @ fsu.edu]

• BSM theory/ Precision calc., Amplitude 
together with HEP experiments
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Try to get the most out of LHC data
• LHC data is consistent with SM over multiple energy scales, sort of beauty of SM. 
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Try to get the most out of LHC data

Talks by Ganguly, Sun

Talk by Song …

• The SM is not satisfactory at all; Higgs sector/EWSB is very ad hoc.  

• “Higgs as a probe of new physics” to “get the most out of the data”

- Higgs self(cubic)-coupling is the next major challenge. 
New idea J/Ψ+cc. T. Han’s talk

E.g. H→cc coupling,  VH→cc  now operated at both CMS/ATLAS, competitive sensitivities!! 

Also pointing out exotic channels motivated by theory.  

Perez, Soreq, Stamou, KT [’15]

Talks by Ganguly, Sun, Braathen, De Curtis, Moretti, Wang, Azevedo, Wong. … 

- Single Higgs couplings

• LHC data is consistent with SM over multiple energy scales, sort of beauty of SM. 
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What is Higgs EFT? HEFT ⊃SMEFT ⊃SM

SM

HEFT
SMEFT

• HEFT seems to have more freedom, but actually has constrained structure,  
e.g. definite cutoff ~4πv unlike in SMEFT where NP can decouple. 

• EW linearly realized. H as SU(2) doublet 
 and expand like |H†H|n… 

- In my talk let me call  
one excluding SMEFT as HEFT. 

• EW is non-linearly realized.  
SU(3)c x U(1)EM is manifest. h, h2, h3…
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What models lead to HEFT?
(i) New heavy states acquire the mass dominantly from the Higgs VEV. 
(ii) New heavy states participates in the electroweak symmetry breaking.  
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Which EFT requires HEFT over SMEFT?
(A) Geometric formulation of EFT and curvature conditions

(B) SU(2)Lx U(1)Y invariant form:  where H is weak doublet. 
    The EFT would have non-analyticities at H→0 

ℒ(h) → ℒ( H†H − vEM)

(∂ H†H)
2 ( H†H)

n

see that, going beyond the SMEFT, there is an obstruction to achieving the separation be-

tween the BSM and EW scales. This other scenario is therefore subject to much more severe

constraints coming from direct and indirect searches for new physics.

Consider, for concreteness, a simple scenario of an EFT where the Higgs boson self-

interactions are described by the potential

V (h) =
m

2
h

2v
(1 +�3)h

3 +
m

2
h

8v2
h
4
. (14)

where the only deviation from the SM resides in the cubic coupling. In particular all hn terms

with n � 5 are absent. Note that such a pattern cannot be obtained from any SU(2)W⇥U(1)Y
invariant potential that is an analytic function of H†

H. In particular, it cannot be obtained

in the SMEFT, unless the entire infinite tower of higher-dimensional operators contributes

to the potential. That situation however corresponds to f ⇠ v, which is phenomenologically

very implausible. On the other hand, Eq. (14) belongs to the parameter space of the so-

called HEFT, which is an e↵ective theory where only the U(1)Q part of the EW symmetry

is linearly realized. In the HEFT, the Goldstone bosons eaten by W and Z transform non-

linearly under the full EW symmetry, while the Higgs boson h is a perfect singlet. As a

consequence, the general potential V = v
4
P1

n=2 cn(h/v)
n with arbitrary coe�cients cn is

allowed by the symmetries, and Eq. (14) represents one particular direction within the HEFT

parameter space.

It is illuminating to rewrite Eq. (14) in a manifestly SU(2)W ⇥U(1)Y invariant language:

V (H) =
m

2
h

8v2
�
2H†

H � v
2
�2

+�3
m

2
h

2v

⇣p
2H†H � v

⌘3

, (15)

where H is the Higgs field in Eq. (1). In the unitary gauge, ⇡i = 0, this potential reduces

Eq. (14). We should mention that we are not aware of a concrete UV-complete model that

would lead to exactly Eq. (15) in the low-energy e↵ective theory. However, there do exist

familiar examples where integrating out heavy degrees of freedoms yields non-analytic e↵ective

interactions. One is the SM plus a chiral 4th generation which, when integrated out at one

loop, generates V � (H†
H)2 log(H†

H). Another is a model with the second Higgs doublet

� and the potential VUV = |�|4 + µ(�†
H + h.c.), where integrating � at tree level yields

V � (H†
H)2/3. Yet another example is the model of Ref. [21], which in a certain parametric

limits leads to an h tadpole in the e↵ective potential, thus V � (H†
H)1/2. It will be clear from

the following discussion that the precise form of Eq. (15) is not important for our argument,

as long as the potential is described by a non-analytic function of H†
H.

For this discussion it is more convenient to work with the linear parametrization of the

Higgs doublet: H = 1p
2

✓
iG1 +G2

v + h+ iG3

◆
.5 Then, outside the unitary gauge, the lagrangian

in Eq. (15) contains interactions between the Higgs and the Goldstones:

V � �3
m

2
h

2v

⇣p
(h+ v)2 +G2 � v

⌘3

, (16)

5This is because we assumed no modifications to other Higgs couplings. Then, in the linear parametrization,
the Goldstone bosons do not have derivative couplings, which simplifies the analysis.
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Tree-level HEFT: singlet example
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Cohen, Craig, Lu, Sutherland

• SM gauge singlet S

|H|
2S2. Recent matching calculations for this scenario in the context of HEFT and

SMEFT include [34, 45–52]. Specifically, the UV Lagrangian is

LUV = |@H|
2
+

1

2
(@S)2 � V , (6.1)

with the potential

V = �µ2
H
|H|

2
+ �H |H|

4
+

1

2

�
m2

+ |H|
2
�
S2

+
1

4
�SS

4 . (6.2)

We require �H ,�S > 0 and 4�H�S > 2 to enforce that the potential is bounded
from below. We have imposed a Z2 symmetry S ! �S to make the model as simple
as possible. Naively, this Z2 symmetry would forbid any non-trivial tree-level effects
unless it is spontaneously broken by the vev of the singlet vS. Once written in terms
of the dynamic field S = vS + s, the Lagrangian is

LUV = |@H|
2
+

1

2
(@s)2 � V , (6.3)

with the potential

V = �

⇣
µ2
H
�

1

2
v2

S

⌘
|H|

2
+ �H |H|

4
+ vS |H|

2s

+
1

2

⇣
2�S v

2
S
+ |H|

2
⌘
s2 + �S vS s

3
+

1

4
�S s

4 . (6.4)

Then L � �vS |H|
2s, the interaction term linear in s, generates non-zero Wilson

coefficients at tree-level. The minimization condition for the vev is

vS
�
m2

+ �S v
2
S

�
= 0 . (6.5)

Clearly there are three solutions, and we choose to work in the parameter space
where m2

 0, implying that vS 6= 0 corresponds to the physical vacuum; solving
Eq. (6.5) implies m2

= ��S v2S. Then the field-dependent mass of the singlet s is

m2
s
(H) = 2�S v

2
S
+ |H|

2
= �2m2

+ |H|
2 . (6.6)

Next, we will integrate out the BSM singlet s at the tree-level and obtain the
effective Lagrangian for H. Our expectation is that we can match onto SMEFT when
m2

6= 0. However, if m2
= 0, the singlet s acquires all of its mass from the Higgs vev

v0. This can generate non-analyticities in the effective Lagrangian for H, such that
one cannot match this theory onto SMEFT. In the following, we will check if this is
the case by performing the matching calculation, and also check if our LO Criteria
in Sec. 4 hold.
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*For positive S mass leading to Sc=0, non-analyticities appear at loop
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Consider, for concreteness, a simple scenario of an EFT where the Higgs boson self-

interactions are described by the potential

V (h) =
m

2
h

2v
(1 +�3)h

3 +
m

2
h

8v2
h
4
. (14)
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- If , EFT should HEFT, otherwise SMEFT expansion .  
EoM yields

|κ |vEM > |m |

masses of the UV states that unitarize them, cannot be made arbitrarily high; they

must appear at the TeV scale or below. This connects the geometric classification of

[14] back to recent results on the TeV-scale cuto↵s of non-SMEFT-like theories [11, 15].

5.1 Tree-level Loryon

Our first example generates non-trivial matching coe�cients at tree-level, by integrating

out a singlet scalar Loryon S. This is the same model discussed in [14, §6.1]. The UV

Lagrangian is determined by writing down all renormalizable interactions between S

and H, assuming that S transforms under a Z2 symmetry:

LUV = |@H|
2 +

1

2
(@S)2 � VUV , (5.1a)

VUV = �µ2
H
|H|

2 + �H |H|
4 +

1

2

�
m2 + |H|

2
�
S2 +

1

4
�SS

4 . (5.1b)

For the potential to be bounded from below, we require �H ,�S > 0 and 4�H�S > 2.

We also need µ2
H

> 0 so that the minimum of VUV break electroweak symmetry. In

addition, we assume that m2 < 0 and  < 0 (such that S has a non-zero vev) in order

to obtain a non-trivial tree-level EFT. To derive the matching, we simply solve for Sc,

the solution to the classical equation of motion for the Loryon, plug it into the UV

Lagrangian, and expand. In [14, §6.1], it was shown that requiring that the solution

intersects the global minimum of the UV theory yields

Sc =

✓
m2 + |H|

2

��S

◆1/2

+O
�
@2
�
, (5.2)

resulting in an EFT of the HEFT form given in Eq. (3.2) with explicit form factors

K(h) =

s

1 + �
(v + h)2

2m2 + (v + h)2
, vF (h) = v + h , (5.3a)

V (h) = �
1

2
µ2
H
(v + h)2 +

1

4
�H(v + h)4 �

1

16�S

h
2m2 + (v + h)2

i2
, (5.3b)

with

� ⌘ �


2�S

> 0 and v ⌘

s
µ2
H
�m2�

�H + 

2�
, (5.4)

where the latter ensures that the global minimum of the EFT potential occurs at h = 0.

Using Eq. (3.11), we can calculate the relevant curvature invariants of the EFT
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1
2 (∂S)2 = 1

2λs (∂ −m2 − κ2 |H |2 )
2- Substitute Sc.. Non-analytic if Higgs VEV  
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*For positive S mass leading to Sc=0, non-analyticities appear at loop

see that, going beyond the SMEFT, there is an obstruction to achieving the separation be-

tween the BSM and EW scales. This other scenario is therefore subject to much more severe

constraints coming from direct and indirect searches for new physics.

Consider, for concreteness, a simple scenario of an EFT where the Higgs boson self-

interactions are described by the potential

V (h) =
m

2
h

2v
(1 +�3)h

3 +
m

2
h

8v2
h
4
. (14)

where the only deviation from the SM resides in the cubic coupling. In particular all hn terms

with n � 5 are absent. Note that such a pattern cannot be obtained from any SU(2)W⇥U(1)Y
invariant potential that is an analytic function of H†

H. In particular, it cannot be obtained

in the SMEFT, unless the entire infinite tower of higher-dimensional operators contributes

to the potential. That situation however corresponds to f ⇠ v, which is phenomenologically

very implausible. On the other hand, Eq. (14) belongs to the parameter space of the so-

called HEFT, which is an e↵ective theory where only the U(1)Q part of the EW symmetry

is linearly realized. In the HEFT, the Goldstone bosons eaten by W and Z transform non-

linearly under the full EW symmetry, while the Higgs boson h is a perfect singlet. As a

consequence, the general potential V = v
4
P1

n=2 cn(h/v)
n with arbitrary coe�cients cn is

allowed by the symmetries, and Eq. (14) represents one particular direction within the HEFT

parameter space.

It is illuminating to rewrite Eq. (14) in a manifestly SU(2)W ⇥U(1)Y invariant language:

V (H) =
m

2
h

8v2
�
2H†

H � v
2
�2

+�3
m

2
h

2v

⇣p
2H†H � v

⌘3

, (15)

where H is the Higgs field in Eq. (1). In the unitary gauge, ⇡i = 0, this potential reduces

Eq. (14). We should mention that we are not aware of a concrete UV-complete model that

would lead to exactly Eq. (15) in the low-energy e↵ective theory. However, there do exist

familiar examples where integrating out heavy degrees of freedoms yields non-analytic e↵ective

interactions. One is the SM plus a chiral 4th generation which, when integrated out at one

loop, generates V � (H†
H)2 log(H†

H). Another is a model with the second Higgs doublet

� and the potential VUV = |�|4 + µ(�†
H + h.c.), where integrating � at tree level yields

V � (H†
H)2/3. Yet another example is the model of Ref. [21], which in a certain parametric

limits leads to an h tadpole in the e↵ective potential, thus V � (H†
H)1/2. It will be clear from

the following discussion that the precise form of Eq. (15) is not important for our argument,

as long as the potential is described by a non-analytic function of H†
H.

For this discussion it is more convenient to work with the linear parametrization of the

Higgs doublet: H = 1p
2

✓
iG1 +G2

v + h+ iG3

◆
.5 Then, outside the unitary gauge, the lagrangian

in Eq. (15) contains interactions between the Higgs and the Goldstones:

V � �3
m

2
h

2v

⇣p
(h+ v)2 +G2 � v

⌘3

, (16)

5This is because we assumed no modifications to other Higgs couplings. Then, in the linear parametrization,
the Goldstone bosons do not have derivative couplings, which simplifies the analysis.
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Tree-level HEFT: singlet example

6

  
Cohen, Craig, Lu, Sutherland

• SM gauge singlet S

|H|
2S2. Recent matching calculations for this scenario in the context of HEFT and

SMEFT include [34, 45–52]. Specifically, the UV Lagrangian is

LUV = |@H|
2
+

1

2
(@S)2 � V , (6.1)

with the potential

V = �µ2
H
|H|

2
+ �H |H|

4
+

1

2

�
m2

+ |H|
2
�
S2

+
1

4
�SS

4 . (6.2)

We require �H ,�S > 0 and 4�H�S > 2 to enforce that the potential is bounded
from below. We have imposed a Z2 symmetry S ! �S to make the model as simple
as possible. Naively, this Z2 symmetry would forbid any non-trivial tree-level effects
unless it is spontaneously broken by the vev of the singlet vS. Once written in terms
of the dynamic field S = vS + s, the Lagrangian is

LUV = |@H|
2
+

1

2
(@s)2 � V , (6.3)

with the potential

V = �

⇣
µ2
H
�

1

2
v2

S

⌘
|H|

2
+ �H |H|

4
+ vS |H|

2s

+
1

2

⇣
2�S v

2
S
+ |H|

2
⌘
s2 + �S vS s

3
+

1

4
�S s

4 . (6.4)

Then L � �vS |H|
2s, the interaction term linear in s, generates non-zero Wilson

coefficients at tree-level. The minimization condition for the vev is

vS
�
m2

+ �S v
2
S

�
= 0 . (6.5)

Clearly there are three solutions, and we choose to work in the parameter space
where m2

 0, implying that vS 6= 0 corresponds to the physical vacuum; solving
Eq. (6.5) implies m2

= ��S v2S. Then the field-dependent mass of the singlet s is

m2
s
(H) = 2�S v

2
S
+ |H|

2
= �2m2

+ |H|
2 . (6.6)

Next, we will integrate out the BSM singlet s at the tree-level and obtain the
effective Lagrangian for H. Our expectation is that we can match onto SMEFT when
m2

6= 0. However, if m2
= 0, the singlet s acquires all of its mass from the Higgs vev

v0. This can generate non-analyticities in the effective Lagrangian for H, such that
one cannot match this theory onto SMEFT. In the following, we will check if this is
the case by performing the matching calculation, and also check if our LO Criteria
in Sec. 4 hold.
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S
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Clearly there are three solutions, and we choose to work in the parameter space
where m2

 0, implying that vS 6= 0 corresponds to the physical vacuum; solving
Eq. (6.5) implies m2

= ��S v2S. Then the field-dependent mass of the singlet s is
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s
(H) = 2�S v
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S
+ |H|

2
= �2m2

+ |H|
2 . (6.6)

Next, we will integrate out the BSM singlet s at the tree-level and obtain the
effective Lagrangian for H. Our expectation is that we can match onto SMEFT when
m2

6= 0. However, if m2
= 0, the singlet s acquires all of its mass from the Higgs vev

v0. This can generate non-analyticities in the effective Lagrangian for H, such that
one cannot match this theory onto SMEFT. In the following, we will check if this is
the case by performing the matching calculation, and also check if our LO Criteria
in Sec. 4 hold.
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- If , EFT should HEFT, otherwise SMEFT expansion .  
EoM yields

|κ |vEM > |m |

masses of the UV states that unitarize them, cannot be made arbitrarily high; they

must appear at the TeV scale or below. This connects the geometric classification of

[14] back to recent results on the TeV-scale cuto↵s of non-SMEFT-like theories [11, 15].

5.1 Tree-level Loryon

Our first example generates non-trivial matching coe�cients at tree-level, by integrating

out a singlet scalar Loryon S. This is the same model discussed in [14, §6.1]. The UV

Lagrangian is determined by writing down all renormalizable interactions between S

and H, assuming that S transforms under a Z2 symmetry:

LUV = |@H|
2 +

1

2
(@S)2 � VUV , (5.1a)

VUV = �µ2
H
|H|

2 + �H |H|
4 +

1

2

�
m2 + |H|

2
�
S2 +

1

4
�SS

4 . (5.1b)

For the potential to be bounded from below, we require �H ,�S > 0 and 4�H�S > 2.

We also need µ2
H

> 0 so that the minimum of VUV break electroweak symmetry. In

addition, we assume that m2 < 0 and  < 0 (such that S has a non-zero vev) in order

to obtain a non-trivial tree-level EFT. To derive the matching, we simply solve for Sc,

the solution to the classical equation of motion for the Loryon, plug it into the UV

Lagrangian, and expand. In [14, §6.1], it was shown that requiring that the solution

intersects the global minimum of the UV theory yields

Sc =

✓
m2 + |H|

2

��S

◆1/2

+O
�
@2
�
, (5.2)

resulting in an EFT of the HEFT form given in Eq. (3.2) with explicit form factors

K(h) =

s

1 + �
(v + h)2

2m2 + (v + h)2
, vF (h) = v + h , (5.3a)

V (h) = �
1

2
µ2
H
(v + h)2 +

1

4
�H(v + h)4 �

1

16�S

h
2m2 + (v + h)2

i2
, (5.3b)

with

� ⌘ �


2�S

> 0 and v ⌘

s
µ2
H
�m2�

�H + 

2�
, (5.4)

where the latter ensures that the global minimum of the EFT potential occurs at h = 0.

Using Eq. (3.11), we can calculate the relevant curvature invariants of the EFT
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1
2 (∂S)2 = 1

2λs (∂ −m2 − κ2 |H |2 )
2- Substitute Sc.. Non-analytic if Higgs VEV  

dominates S mass

Negative

*For positive S mass leading to Sc=0, non-analyticities appear at loop

see that, going beyond the SMEFT, there is an obstruction to achieving the separation be-

tween the BSM and EW scales. This other scenario is therefore subject to much more severe

constraints coming from direct and indirect searches for new physics.

Consider, for concreteness, a simple scenario of an EFT where the Higgs boson self-

interactions are described by the potential

V (h) =
m

2
h

2v
(1 +�3)h

3 +
m

2
h

8v2
h
4
. (14)

where the only deviation from the SM resides in the cubic coupling. In particular all hn terms

with n � 5 are absent. Note that such a pattern cannot be obtained from any SU(2)W⇥U(1)Y
invariant potential that is an analytic function of H†

H. In particular, it cannot be obtained

in the SMEFT, unless the entire infinite tower of higher-dimensional operators contributes

to the potential. That situation however corresponds to f ⇠ v, which is phenomenologically

very implausible. On the other hand, Eq. (14) belongs to the parameter space of the so-

called HEFT, which is an e↵ective theory where only the U(1)Q part of the EW symmetry

is linearly realized. In the HEFT, the Goldstone bosons eaten by W and Z transform non-

linearly under the full EW symmetry, while the Higgs boson h is a perfect singlet. As a

consequence, the general potential V = v
4
P1

n=2 cn(h/v)
n with arbitrary coe�cients cn is

allowed by the symmetries, and Eq. (14) represents one particular direction within the HEFT

parameter space.

It is illuminating to rewrite Eq. (14) in a manifestly SU(2)W ⇥U(1)Y invariant language:

V (H) =
m

2
h

8v2
�
2H†

H � v
2
�2

+�3
m

2
h

2v

⇣p
2H†H � v

⌘3

, (15)

where H is the Higgs field in Eq. (1). In the unitary gauge, ⇡i = 0, this potential reduces

Eq. (14). We should mention that we are not aware of a concrete UV-complete model that

would lead to exactly Eq. (15) in the low-energy e↵ective theory. However, there do exist

familiar examples where integrating out heavy degrees of freedoms yields non-analytic e↵ective

interactions. One is the SM plus a chiral 4th generation which, when integrated out at one

loop, generates V � (H†
H)2 log(H†

H). Another is a model with the second Higgs doublet

� and the potential VUV = |�|4 + µ(�†
H + h.c.), where integrating � at tree level yields

V � (H†
H)2/3. Yet another example is the model of Ref. [21], which in a certain parametric

limits leads to an h tadpole in the e↵ective potential, thus V � (H†
H)1/2. It will be clear from

the following discussion that the precise form of Eq. (15) is not important for our argument,

as long as the potential is described by a non-analytic function of H†
H.

For this discussion it is more convenient to work with the linear parametrization of the

Higgs doublet: H = 1p
2

✓
iG1 +G2

v + h+ iG3

◆
.5 Then, outside the unitary gauge, the lagrangian

in Eq. (15) contains interactions between the Higgs and the Goldstones:

V � �3
m

2
h

2v

⇣p
(h+ v)2 +G2 � v

⌘3

, (16)

5This is because we assumed no modifications to other Higgs couplings. Then, in the linear parametrization,
the Goldstone bosons do not have derivative couplings, which simplifies the analysis.
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EFT cutoff ~4πv
• With m=0, singlet mass=(-2κ)1/2v

κ~4π, ms=(8π)1/2v
v~0, ms~0 Non-analytic EFT at H=0
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Exploring HEFT  

7

‣ Single Higgs couplings

‣ Vacuum stability

‣ Higgs self-coupling

‣ Perturbative unitarity 

*G: NG bosons, ~ZL/WL

✓ on-going,  
O(10%) precision

✓ on-going,  
O(5) precision

-

Not established. Strongly coupled below 4πv ~3TeV. 
in Higgs/G scatterings  

Deviation expected in the singlet model.  
If non-analyticities in potential, no deviation.

Generic expectationExperimental scope

…

Deviation expected

Suppose some non-analyticities in EFT.  



Kohsaku Tobioka, Florida State University 

Perturbative unitarity of HEFT
• What has been discussed 

8

- 2-to-2: GG→hh can be safe [cross section not growing with energy] 

- 2-to-n:  GG→3h or more, cross section grows with energy. 

Falkowski&Rattazzi [’19]

Similar observation by Chang, Luty

Z. Dong, T. Ma, J. Shu, Z. Zhou; H. Liu, T. Ma, Y. Shadmi, M. Waterbury

See also S. Kanemura, R. Nagai; R. Nagai, M. Tanabashi, K. Tsumura, Y. Uchida
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Perturbative unitarity of HEFT
• What has been discussed 

8

‣ Question:  
To observe the energy growing behavior at collider, is GG→nxh practical? 
Not easy even at future colliders. 

- 2-to-2: GG→hh can be safe [cross section not growing with energy] 

- 2-to-n:  GG→3h or more, cross section grows with energy. 

Falkowski&Rattazzi [’19]

Similar observation by Chang, Luty

Z. Dong, T. Ma, J. Shu, Z. Zhou; H. Liu, T. Ma, Y. Shadmi, M. Waterbury

See also S. Kanemura, R. Nagai; R. Nagai, M. Tanabashi, K. Tsumura, Y. Uchida
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Replacing 2h with 2G
• If 2G→3h scattering is interesting, so is 2G→2G+1h. Almost same discussion. 

• E.g. , 
 
So far we find  
amplitudes of 2G→2G+1h grow equally or faster than ones of 2G→3h. 

( H†H)
n

= ((h + v)2 + G2)n/2

✴This tendency is more sharp in the singlet model giving   
We find: A(2G→2G+1h) ≫ A(2G→3h). 

(∂ H†H)
2

9
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WW→WWh more practical at colliders
• WW→3h is hard, because of higgs decay modes. 60% is h→2b-jets. (2%:2γ) 

Even 2h is very challenging (why h-cubic is poorly constrained). 

• W boson has a significant BR to leptons. (WWW was  measured at LHC) 
Also Z boson is better than h.  

10

  14

Immediate goals 

● Bottom decays usually not as desirable as BR implies, 
since jets are much harder to analyze

h+

‣ We gain signal statistics by ~100 due to practical decay patterns   
on top of A(2G→2G+1h) > A(2G→3h)

‣ Quantitative sensitivities to be studied.



Thank you!


