Thermal production of bosonic dark matter and Bose-enhancement

Tohoku U. Wen Yin

@HPNP 2023 8th Jun 2023, Osaka

Mainly based on JHEP 05 (2023) 180, 2301.08735

Thermal production of bosonic dark matter and Bose-enhancement

Tohoku U. Wen Yin

Axion dark matter around eV for this talk

@HPNP 2023 8th Jun 2023, Osaka

Mainly based on JHEP 05 (2023) 180, 2301.08735

Hints for eV DM

Possible DM mass spreads from $m_{\rm DM} = [10^{-22} eV - M_{\odot}]$. The coupling and spin are unknown. Interestingly, in the huge parameter region, we have coincidences

The anisotropic cosmic infrared **background (CIB)** data suggests a decaying DM with

 $m_a \sim eV$, $g_{a\gamma\gamma} \sim 10^{-10} \,\text{GeV}^{-1}$ Gong et al 1511.01577 IHL $[\times 10^{-10}]$ No IHL Caputo et al, 2012.09179 ~⁶ $g_{a\gamma\gamma}$ 0^{.0} 2.5 رن زن J.30 3.00 $m_a(eV)$

 $\sim eV$ $g_{a\gamma\gamma} \sim 10^{-1}$ snin=0

The **TeV** γ **spectrum** gets a better fit by photons from ALP DM of $m_a \sim eV$, $g_{a\gamma\gamma} \sim 10^{-10} \,\text{GeV}^{-1}$

Hot DM paradigm (-1984) e.g. Introduction of Davis et al, Astrophys.J. 292 (1985) 371-394 eV-range DM was special and theoretically well-motivated before the WIMP paradigm. $\therefore n_{\rm DM} \sim T^3, T_{\rm matter-radiation equality} \sim eV$ $m_{ m DM} \sim eV$ However, it is too hot.

• See also ALP miracle scenario, Daido, Takahashi, WY, 1702.03284,1710.11107, where DM=inflaton predicts eV axion.

What I will talk about Thermal production of eV bosonic cold DM, a la hot DM, is available. eV range DM is still special and theoretically well-motivated.

WY 2301.08735

Setup: $\chi_1(\text{fermion}) \rightarrow \chi_2(\text{fermion})\phi(\text{DM}).$ $\chi_1 \text{ mass} : M_1 (\ll T)$ χ_2, ϕ : massless $\frac{\partial f_i[p_i, t]}{\partial t} - p_i H \frac{\partial f_i[p_i, t]}{\partial p_i} = C^i[p_i, t],$ **Equations:** $C^{\phi} = \frac{1}{2E_{\phi} q_{\phi}} \sum \int d\Pi_{\chi_1} d\Pi_{\chi_2}$ $\begin{aligned} &(2\pi)^4 \delta^4(p_{\chi_1} - p_\phi - p_{\chi_2}) \times |\mathcal{M}_{\chi_1 \to \chi_2 \phi}|^2 \\ &\times S\left(f_{\chi_1}[p_{\chi_1}], f_{\chi_2}[p_{\chi_2}], f_\phi[p_\phi]\right) \end{aligned}$

(Initial) conditions:

 χ_1 is always thermalized, while χ_2 and ϕ are absent initially.

WY 2301.08735

$$\begin{split} S &\equiv f_{\chi_1}[p_{\chi_1}](1 \pm f_{\chi_2}[p_{\chi_2}])(1 + f_{\phi}[p_{\chi_2}])(1 + f_{\phi}[p_{\chi_2}])(1 + f_{\chi_2}[p_{\chi_2}])(1 + f_{\chi_2}[p_{\chi_2}])($$

Burst production of DM ϕ turns out

Three stages of burst production: 1. Ignition 2. Burst **3. Saturation**

 $(T \sim 10M_1)$

10

Burst production of DM ϕ turns out

Three stages of burst production: 1. Ignition 2. Burst **3. Saturation**

 $(T \sim 10M_1)$

10

Stage 2: Burst (Bose-enhanced production) p_{ϕ}^{burst} modes grow exponentially due to Bose enhancement. So does ϕ number density.

 $(p_{\phi}^{\text{burst}})^3 f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]$ ~ $(p_{\phi}^{\text{burst}})^3 \exp[t/\Delta t_{\text{ignition}}]$ $\sim n_{\phi}[t]$

 $(T \sim 10M_1)$

The quasi-equilibrium is kept on a very long time scale until

$$t \sim \left(\Gamma_{\text{decay}}^{(\text{proper})}\right)^{-1} \frac{T}{M_1} \sim \left(\frac{T}{M_1}\right)^4 \Delta t_{\text{igniti}}$$

ion[•]

 $\dot{n}_{\chi_2} = \dot{n}_{\phi} \text{ in } \chi_1 \leftrightarrow \chi_2 \phi,$

The quasi-equilibrium is kept on a very long time scale until

$$t \sim \left(\Gamma_{\text{decay}}^{(\text{proper})}\right)^{-1} \frac{T}{M_1} \sim \left(\frac{T}{M_1}\right)^4 \Delta t_{\text{igniti}}$$

ion[•]

Burst production in expanding Universe If there is a period satisfying

the burst produced ϕ remains due to redshift and kinematics.

 $\left(\frac{M_1}{T}\Gamma_{\rm decay}^{\rm (proper)}\right) \sim \frac{M_1^4}{T^4} 1/\Delta t_{\rm ignition} \ll H \ll 1/\Delta t_{\rm ignition},$

Conclusions: Bose enhancement in eV range DM is still special and

. Predictions of freeze-in scenarios $\chi_1 \rightarrow \chi_2 \phi$, $\Phi_1 \rightarrow \phi \phi$, may be significantly altered by this effect. Only when $\chi_1^{thermal} \rightarrow \chi_2^{thermal} \phi$ the conventional analysis is a good approximation.

light DM production is very important. WY 2301.08735 theoretically well-motivated, a la hot DM paradigm. The cosmic-infrared background

and γ -ray hints may be interesting.

One can confirm the hints by using infrared spectrographs

T. Bessho, Y. Ikeda, WY, Phys.Rev.D 106 (2022) 9, 095025, WY, Hayashi, 2305.13415

> -DM signals from Dwarfs are sky background free for existing high energy resolution infrared spectrographs.

-With high angular resolution one can "see" the DM distribution from the decay photon in dwarfs.

WY, Hayashi, 2305.13415

eV DM search with WINERED @ Magellan A high-resolution infrared spectrograph is Com Boo I Leo one of the most efficient DM detectors.

https://www.cfa.harvard.edu

eV DM search with IRCS @ Subaru

The high angular resolution requires a different estimation of DM

Conclusions: eV DM!

- range.
- eV range DM is still special and paradigm. wy 2301.08735
- The hinted mass range can be checked by infrared spectrographs, and stay tuned!

Observational hints coincide in the eV DM

theoretically well-motivated, a la hot DM

T. Bessho, Y. Ikeda, WY, Phys.Rev.D 106 (2022) 9, 095025, WY, Hayashi 2305.13415

Back up

Stage 3: Saturation (quasi-equilibrium) The burst production stops due to the inverse decay when $f_{\chi_2}[p_{\chi_2} \sim T] \sim f_{\chi_1}[p_{\chi_1} \approx p_{\chi_2}]$, c.f. thermal equilibrium.

 $C^{\phi} = \frac{1}{2E_{\phi}q_{\phi}} \sum \int d\Pi_{\chi_1} \, d\Pi_{\chi_2}$ $S \equiv f_{\chi_1}[p_{\chi_1} \sim T](1 \pm f_{\chi_2}[p_{\chi_2} \sim T])(1 + f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}])$ $(2\pi)^4 \delta^4(p_{\chi_1} - p_{\phi} - p_{\chi_2}) \times |\mathcal{M}_{\chi_1 \to \chi_2 \phi}|^2 \\ \times S(f_{\chi_1}[p_{\chi_1}], f_{\chi_2}[p_{\chi_2}], f_{\phi}[p_{\phi}])$ $-(1 \pm f_{\chi_1}[p_{\chi_1} \sim T])f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]f_{\chi_2}[p_{\chi_2} \sim T]$ $\sim [f_{\chi_1}[p_{\chi_1} \sim T] - f_{\chi_2}[p_{\chi_2} \sim T]) f_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}]$

 $\dot{f}_{\phi}[p_{\phi} \sim p_{\phi}^{\text{burst}}] \sim 0$

With $f_{\phi}[p \sim p_{\phi}^{\text{burst}}] \gg 1, f_{\chi_2}[p_{\chi_2} \sim T] \sim 1$

Stage 1: Ignition

Comparison of hot DM production and burst production in $\chi_1 \leftrightarrow \phi \chi_2$ system WY 2301.08735 Hot DM paradigm (-1984): **Burst production of DM** $\left(\frac{T}{M_1}\right)^3 \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > \frac{M_1}{T} \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > H \text{ for } T > M_1 \qquad \left(\frac{T}{M_1}\right)^3 \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} > H > \frac{M_1}{T} \Gamma_{\chi_1 \to \chi_2 \phi}^{(\text{proper})} @ \text{ a period}$ $n_{\phi} \sim T^3$ from thermal equilibrium $n_{\phi} \sim T^3$ from quasi-equilibrium of bose-enhancement dynamics => eV mass for DM abundance => eV mass for DM abundance •Comoving momentum is Comoving momentum is $p_{\rm com} \sim a_{\rm prod} M_1^2 / T_{\rm prod}$ $p_{\rm com} \sim a_{\rm prod} T_{\rm prod}$ => hot 11 => cold

 $\dot{n}_{\chi_2} = \dot{n}_{\phi} \text{ in } \chi_1 \leftrightarrow \chi_2 \phi,$

 $\dot{n}_{\chi_2} = \dot{n}_{\phi} \text{ in } \chi_1 \leftrightarrow \chi_2 \phi,$

The quasi-equilibrium is kept on a very long time scale until

$$t \sim \left(\Gamma_{\text{decay}}^{(\text{proper})}\right)^{-1} \frac{T}{M_1} \sim \left(\frac{T}{M_1}\right)^4 \Delta t_{\text{igniti}}$$

ion[•]

Non-trivial results in slightly different setups: WY 2301.08735

Cooling of DM due to inverse decay with slight mass degeneracy of mother particles.

Freeze-in production of the DM may have significantly different abundance and free-streaming length from the conventional estimations.

Narrow parametric resonance \approx Boltzmann equation including Bose enhancement/Pauli-block factor. Moroi, WY, 2011.12285 (See also "Physical Foundations of Cosmology" Mukhanov) N_{γ} -Analytical solution for DM 10¹⁷ $\rightarrow \chi\chi$ Moroi, WY, 2011.12285 distribution from condensate **10**¹³ decays Moroi, WY, <u>2011.09475</u>, 2011.12285 10⁹ 10⁵ OFT marrow resonance) 000. 0.001 10^{-7} 100 1000 500 5000

$$f_k(t \to \infty) = \pm \frac{1}{2} \left(e^{\pm 2\bar{f}(t_k)} - 1 \right) \theta(p_\chi - k),$$

$$\sim q^2 \frac{m_\phi}{H} \frac{m_\phi^2}{4p_\chi^2} \lesssim \frac{m_\phi}{H} \frac{m_\phi^2}{4p_\chi^2}$$

-Model-building for $m_{\phi} > H$

·Light DM from inflaton decay Moroi, WY, <u>2011.09475</u>, 2011.12285,

·Light axion/hidden photon from dark (PQ) Higgs decay Nakayama WY, 2105.14549

Time $[1/m_{\phi}]$

Next part