Di-Higgs production in extended scalar sectors

Duarte Azevedo

In collaboration with: H. Abouabid, A. Arhrib, J. Falaki, P. Ferreira, M. M. Mühlleitner, R. Santos.

Institute for Theoretical Physics (ITP) Karlsruher Institut für Technologie Germany duarte.azevedo@kit.edu

HPNP 2023 Based on: JHEP 11 (2022) [2112.12515]

June 6th, 2023

Karlsruhe Institute of Technology

DA acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under grant 396021762 - TRR 257.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ → ■ → の Q (>)

\rightarrow Scalar particle discovered in 2012 experimentally completing the SM

Phys. Lett. B 716 (2012) 1-29, Phys. Lett. B 716 (2012) 30

- ... we need new physics: Dark Matter, baryon asymmetry, among others...
- Extended scalar sectors can tackle these
- \bullet Di-Higgs prod. is pertinent to measure self-interactions \rightarrow probe scalar potential
- SM: destructive interference
- BSM: can enhance significantly di-Higgs rates

< ∃ →

- \rightarrow Impact of di-Higgs constraints on archetypical extended scalar sectors
- \rightarrow What is the allowed enhancement to di-Higgs post fact?
- \rightarrow Provide interesting benchmarks for pair production
 - Main focus: SM-like Higgs pairs.
 - SM-like + non-SM-like Higgs pairs [not covered]
 - Exotic di-scalar or cascading production [not covered]
- \rightarrow Mapping to EFT [not covered]

The models:

- R2HDM CP-conserving (h, H, A , H^{\pm})
- C2HDM CP-violation (H_1 , H_2 , H_3 , H^{\pm})
- N2HDM Singlet admixture $(H_1, H_2, H_3, A, H^{\pm})$
- NMSSM SUSY (H₁, H₂, H₃, A₁, A₂, H[±])¹

 \rightarrow We considered the \mathbb{Z}_2 symmetric versions (for first three models) to inhibit FCNC

イロト イポト イヨト イヨト

¹Capitalization and subscript numbering refer to mass ordering.

Overview

Introduction

- Experimental searches
- Di-Higgs production in BSM

2 Main results

- Methodology
- Impact of resonant and non-res. searches
- Benchmarks

3 Conclusions

イロン イ団 と イヨン イヨン

Experimental searches Di-Higgs production in BSM

CMS Nature 607(2022)60

Non-resonant searches

Disclaimer: Not most up-to-date [Sep. 22]

ATLAS ATLAS-CONF-2022-050

k_{λ} lim.	Obs.	Exp.
ATLAS $bar{b}\gamma\gamma$	[-1.6, 6.7]	[-2.4, 7.7]
CMS $bar{b} auar{ au}$	[-1.7, 8.7]	[-2.9, 9.8]

 \rightarrow Non-resonant searches considers $y_t = y_t^{SM}$.

イロト イポト イヨト イヨト

Experimental searches Di-Higgs production in BSM

CMS_PAS_B2G_20-004

< ロ > < 同 > < 三 > < 三 >

Resonant searches

ATLAS ATLAS-CONF-2021-052

- Low mass regime $b\bar{b}\gamma\gamma$ [ATLAS]
- Intermediate mass regime $b\bar{b}\tau\bar{\tau}$ [ATLAS]
- High mass regime bbbb [ATLAS]
- Very high mass regime (> 1 TeV) $b\bar{b}b\bar{b}$ [CMS]

Experimental searches Di-Higgs production in BSM

Enhancing di-Higgs production

SM cross-section recommendations by the $\rm LHCXSWG^2$

<u>√s</u>	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
σ _{NNLO FTapprox} [fb]	6.572	9.441	31.05	36.69	139.9	1224

By varying the λ_{HHH} and y_t couplings

Di-Higgs production in BSM

Enhancing di-Higgs production

From the existence of additional diagrams

New contributions and interferences will depend on:

- Trilinear couplings (many!)
- Masses
- Particle widths
- \rightarrow Resonant and (non-SM-like) non-resonant prod. are simultaneously present

イロト イポト イヨト イヨト

Main codes: ScannerS Mühlleitner et. al (2007.02985) and NMSSMCALC Baglio et al. (1312.4788)

- Random parameter space scans
- Theoretical and experimental constraints
- We applied di-Higgs constraints manually

Cross-sections:

Methodology

- Single Higgs rates w/ SusHi Harlander et al. (1605.03190) @13/14TeV@NNLO_QCD.
- Double Higgs rates w/ HPAIR³ (and variations):
 - NLO born-improved heavy top-quark mass limit.
 - Scans: $2 * (\sigma_{HH}^{LO}@14 \text{ TeV})$ to approximate QCD correction.
 - K-factor around 2 for di-Higgs productionDawson et al. (hep-ph/9806304), Grober et. al. (1705.05314), Dawson et al. (hep-ph/9806304), Buchalla et al. (1806.05162).

\rightarrow Benchmarks are presented @14 TeV@NLO.

イロト イポト イヨト イヨト

э.

³http://tiger.web.psi.ch/proglist.html

Introduction Methodology Main results Impact of resonant and non-res. searches Conclusions Benchmarks

Impact of resonant searches

 \rightarrow Due to NW exp. searches: constrain $\sigma(gg \rightarrow H_i) * BR(H_i \rightarrow H_{SM}H_{SM})$

 \rightarrow Assumes small widths, SM-like non-resonant bkg and no interference

N2HDM-I: H_1 is SM-like (two resonances)

- Points where $\Gamma(H_i)/m_i > 5\% \rightarrow NWA$ is not valid
- Points where $\Gamma(H_i)/m_i > 50\% \rightarrow \text{not considered}$

< D > < A >

-∢ ⊒ ▶

Methodology Impact of resonant and non-res. searches Benchmarks

Impact of resonant searches

N2HDM-I: H_1 is SM-like (two resonances)

Before resonant bounds

After resonant bounds

イロト イボト イヨト イヨト

Introduction Methodology Main results Impact of resonant and non-res. searches Conclusions Benchmarks

Impact of non-resonant searches

We apply non-resonant constraints to non-resonant points.

• Definition: non-resonant point fulfils $\sigma_{HH}^{full} > 10 * \sigma_{HH}^{res}$ [shaded area]

- Leading non-resonant constraint is $b\bar{b}\gamma\gamma$: $\sigma_{HH}^{\text{non-res}} < 4.1 * \sigma_{HH}^{\text{SM}}$.
- For the largest XS, linear correlation between resonant and full result

イロト イポト イヨト イヨト

Methodology Impact of resonant and non-res. searches Benchmarks

イロト イボト イヨト イヨト

э

Impact of all searches

N2HDM-I: H1 is SM-like

- Single Higgs data constrains the Yukawa coupling
- Additional bound $\lambda_{ijk} < \lambda_{HHH}^{SM}(m_H = 700 \text{ GeV}) \approx 6 \text{ TeV cuts lower branch}$
- Di-Higgs data is starting to constrain trilinears

Methodology Impact of resonant and non-res. searches Benchmarks

H_{SM}H_{SM} production benchmarks

All rates @NLO [fb]

Non-resonant

 $\sigma(H_i \rightarrow H_{SM}H_{SM}) < 0.1 * \sigma(H_{SM}H_{SM})$

Resonant

	H_1	H_2	H_3
R2HDM-I	92	49	
R2HDM-II	59	-	
C2HDM-I	98	44	42
C2HDM-II	75	-	-
N2HDM-I	151	96	44
N2HDM-II	112	58	-
NMSSM	73	65	-

	H_1	H_2
R2HDM-I	444	n.a.
R2HDM-II	81	n.a.
C2HDM-I	387	47
C2HDM-II	130	-
N2HDM-I	376	344
N2HDM-II	188	63
NMSSM	183	65

- Non-resonant: rates can be up to 4 times the SM expectation
- Resonant: rates can be up to 11 times the expectation

Conclusions

- A first analysis of the application and impact of di-Higgs constraints on archetypical BSM models.
- Resonant searches already constrain all the models
- In the N2HDM: trilinears are now being constrained by **both res. and non-res.** searches
- Large XS across the board, several potential searches to be exploited

Check out our results and benchmarks: JHEP 11 (2022) $\underline{[2112.12515]}$ Thank you!

= nar

イロト イヨト イヨト -

Backup

Duarte Azevedo Di-Higgs@BSM

≡ ∽ へ (~

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Impact from all searches

N2HDM-I Non-resonant sample

Full sample

 \rightarrow **Resonant** and **non-resonant** searches needed to constrain BSM SM-like trilinear \rightarrow $H_2 = H_{SM}$ scenario suffers from destructive interference

イロト イ団ト イヨト イヨト

Main results Conclusions

Overview C2HDM

- EDM constraints favor degeneracy
- For type II: flavor constraints force $m_{H^\pm} > 800~{
 m GeV}$
- Decoupling limit is visible

Overview N2HDM

• Destructive interference in type I: $H_2 = H_{SM}$

3000

$h_{SM}\phi_{BSM}$ production

All rates @NLO [fb]

 $\overline{gg \to H_{SM} H_j / A_j \to b \bar{b} b \bar{b}}$

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{SM})$			46	2.02
	$H_1H_2 (\equiv H_{\rm SM})$		—	35	1.97
C2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	266	9	19	2.02
	$H_1H_2 (\equiv H_{\rm SM})$	_	—	14	2.01
	$H_1H_3 (\equiv H_{\rm SM})$	_	—	11	1.96
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	360	109	105	2.01
	$AH_1 (\equiv H_{SM})$		—	830	2.06
	$H_1H_2 (\equiv H_{SM})$	229	2260	2110	2.09
	$AH_2 (\equiv H_{SM})$		—	277	2.04
	$H_1H_3 (\equiv H_{SM})$		—	44	1.97
	$H_2H_3 (\equiv H_{\rm SM})$	_	—	30	1.97
	$AH_3 (\equiv H_{SM})$		—	19	2.01
N2HDM-II	$H_1H_2(\equiv H_{\rm SM})$	640	18	18	1.86
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	553	210	201	1.92
	$H_2H_1(\equiv H_{\rm SM})$	535	42	43	1.91
	$A_1H_2 (\equiv H_{\rm SM})$	511	42	40	1.94
	$H_1H_2(\equiv H_{\rm SM})$	714	58	59	1.90

• Details on these points can be provided on request.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

All rates @NLO [fb]

$$gg
ightarrow H_{SM}H_j/A_j
ightarrow b ar{b} W^+W^-$$

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	Rate [fb]	K-factor
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	406	497	498	1.98
	$H_1H_2 (\equiv H_{\rm SM})$	304	615	590	2.04
NMSSM	$H_2H_1(\equiv H_{\rm SM})$	531	45	47	1.92

 $gg \to H_{SM} H_j / A_j \to b \bar{b} t \bar{t}$

Model	Mixed Higgs State	m _{res.} [GeV]	res. rate [fb]	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{SM})$	—		11	1.94
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	634	81	88	1.86
	$AH_1 (\equiv H_{\rm SM})$	—	—	15	1.90
N2HDM-II	$H_2H_1(\equiv H_{\rm SM})$	813	23	34	1.79
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	—	_	82	1.88
	$H_2H_1(\equiv H_{\rm SM})$	535	19	19	1.91

$h_{SM}\phi_{BSM}$ production

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Duarte Azevedo