Exploring new physics by comprehensive studies of loop-corrected decays of various Higgs bosons

```
Mariko Kikuchi (Nihon U.)
```

Collaborators;

- Masashi Aiko (KEK)
- Shinya Kanemura (Osaka U.)
- Kodai Sakurai (U. of Warsaw / Tohoku U.)

Kei Yagyu (Osaka U.)

NPB 983(2022)115906, Kanemura, MK, Yagyu
 In preparation, Aiko, Kanemura, MK, Sakurai, Yagyu

```
HPNP2023@Osaka U., Jun 7, 2023
```


Current situation

- Discovery of Higgs boson 2012
- The Higgs boson is Standard Model-like

• New particles have not been discovered yet

Why is Higgs sector important?

- Higgs sector is still the black box.
 - ➢ What is origin of EWSB?
 - ➢ Elementary or Composite?
 - ➤ Are there no other Higgs bosons?
- "What is Structure of Higgs sector" ?
 - \succ No principle to require the minimal Higgs sector.
 - Various extended Higgs sectors
 - \succ Non-minimal Higgs sectors are often introduced in new physics models.

3

Structure of Higgs sector is related to new physics scenarios.

To explore Higgs sector is essentially important.

4

Extended Higgs sectors

- We focus on "2nd Simplest Higgs sector
 ➤ General renormalizable models → There are many models.
 - ➤ 2nd Simplest Higgs sector → The number is not so much. $Φ_1(I=1/2, Y=1/2) + φ_2(I, Y)$
- Electroweak rho parameter
 - > Electroweak precision measurements favor the theory with $\rho \simeq 1$.
 - > Models with $\rho_{\text{tree}} = 1$.

Higgs singlet model (HSM)	: Ф1 + singlet
Multi Higgs doublets	: Φ1 + Φ2 +
Higgs septet model	: Ф1 + septet
Georgi-Machacek model	: Ф1 + real and complex triplet

We focus on 2nd Simplest Higgs sectors with $ho_{
m tree}=1$.

Two Higgs double models (THDMs)

- Some new physics models contain two Higgs doublets. (MSSM, Inert DM, loop induced $m_{\rm v}$, CPV, ...)
- We focus on THDM with softly broken Z2.
 Can avoid FCNC.
 Type I Type II Type II (Lepton specific)
 4 types of Yukawa interactions Φ₂ U Φ₂ U U d I
- We focus on CP-conserving case
- Mass eigenstates Higgs basis h (125GeV Higgs), H, A, H^{\pm} $\begin{pmatrix} & G^{+} \\ & & \end{pmatrix} = \begin{pmatrix} & H^{+} \\ & & & \end{pmatrix} \begin{pmatrix} h'_{1} \\ & & & \end{pmatrix} = \begin{pmatrix} \cos(\beta - \alpha) & \sin(\beta - \alpha) \end{pmatrix} \begin{pmatrix} H \\ & & \end{pmatrix}$

$$\Phi = \begin{pmatrix} a & h' \\ \frac{1}{\sqrt{2}}(h'_1 + v + iG^0) \end{pmatrix} \quad \Phi' = \begin{pmatrix} H' \\ \frac{1}{\sqrt{2}}(h'_2 + iA) \end{pmatrix} \quad \begin{pmatrix} h'_1 \\ h'_2 \end{pmatrix} = \begin{pmatrix} \cos(\beta - \alpha) & \sin(\beta - \alpha) \\ -\sin(\beta - \alpha) & \cos(\beta - \alpha) \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}$$

• Parameters in potential $m_h \ v \ m_H \ m_A \ m_{H^+} \sin(\beta - \alpha) \ \tan\beta \ M^2$

$$\Re M^2 = \frac{m_3^2}{\sin\beta\cos\beta} \quad tan\beta = \frac{v_2}{v_1}$$

e.g. Radiative seesaw

MSSM

5

Type Y

(Flipped)

Coupling deviation 1

• Higgs boson coupling can deviate from SM predictions.

hWW, hZZ

$$\kappa_V^h = \frac{g_{hVV}^{NP}}{g_{hVV}^{SM}} = \sin(\beta - \alpha)$$

- If the deviations are detected, upper bounds on m_{Φ} are given by perturbative unitarity and vacuum stability.

Coupling deviation 2

Deviation pattern depends on the structure of the Higgs sector.

Yukawa interaction

THDM If *f* couples to $\Phi_2 \kappa_f = \sin(\beta - a) + \cot\beta \cos(\beta - a)$ If *f* couples to $\Phi_1 \kappa_f = \sin(\beta - a) - \tan\beta \cos(\beta - a)$

• In $sin(\beta - \alpha) \rightarrow 1$ limit, all couplings of *h* are aligned to those of SM. $sin(\beta - \alpha) \rightarrow 1$: Higgs alignment limit

Additional Higgs bosons' decay in nearly-alignment

In nearly alignment case, additional Higgs bosons' decays are very interesting !!

- Additional Higgs couplings with SM particles Alignment limit $\begin{array}{c} HWW, HZZ \\ HHh \end{array} \quad \kappa_V^H = \frac{g_{HVV}^{NP}}{g_{hVV}^{SM}} = \cos(\beta - \alpha) \\ \hline Hhh \\ \lambda_{Hhh} = -\frac{\cos(\beta - \alpha)}{2v\sin 2\beta} \left\{ (2m_h^2 + m_H^2 - 3M^2)\sin 2\alpha + M^2\sin 2\beta \right\} \rightarrow 0 \end{array}$ But, in nearly alignment they play important roles $\begin{array}{c} Hff \\ Type-I THDM \end{array} \quad \kappa_f^H = \cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha) \\ \hline Hff \\ \end{array} \quad \forall results = -\cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha) \\ \hline Hff \\ \end{bmatrix}$
- Branching ratio of H

If $sin(\beta - \alpha) \neq 1$, "Higgs to Higgs decays" channels can be main decay channels.

Searchable regions in nearly-alignment

Wide parameter region is expected to be surveyed by "Higgs to Higgs decays" such as $H \rightarrow hh$ and $A \rightarrow Zh$.

But, they are results at tree level.

Radiative corrections should be included in the analyses.

H-COUP project

Numerical program for Full set of BRs of Higgs bosons with radiative corrections.

Ver.1 (2017)
Ver.2 (2019)
Cecay BRs of *h(125)*. Kanemura, MK, Sakurai, Yagyu, CPC.233(2018)134
Decay BRs of *h(125)*. Kanemura, MK, Mawatari, Sakurai, Yagyu, CPC 257(2020) 107512
Ver.3(Coming soon)
Decay BRs of additional Higgs bosons
(Other public tools)
★2HDECAY : [M. Krause, M. Mühlleitner, M. Spira], ★Prophecy4f : [A. Denner, S. Dittmaier, A. Mück]

H-COUP ver.3

Processes in THDMs

NPB 973 (2021) 115581, Aiko, Kanemura, Sakurai NPB 983(2022)115906 Kanemura, MK, Yagyu

NPB 986 (2023) 116047 Aiko, Kanemura, Sakurai,

CP-even	CP-odd	Charged
$H \rightarrow VV$	$A \to ff$	$H^{\pm} \to f f'$
$H \to ff$	$A \rightarrow Zh, ZH$	$H^{\pm} \rightarrow AW$
$H \rightarrow hh$	$A \to H^{\pm}W$	$H^{\pm} \rightarrow HW, hW$
$H \to AA, H^+H^-$	$A \rightarrow ZZ, WW, \gamma Z$	$H^{\pm} \rightarrow W\gamma, WZ$
$H \rightarrow AZ, H^{\pm}W$		

We are extending similar calculations for additional Higgs bosons' processes to **HSM** and **IDM**.

We show results for decays of $H \rightarrow hh$, $A \rightarrow Zh$, $h \rightarrow VV^*$, $h \rightarrow ff$ in THDMs.

 $\Gamma[h \rightarrow ff], \Gamma[h \rightarrow ZZ^*]$

If $|\Delta R[h \rightarrow bb/\tau\tau]|$ > several %, prediction of each Type does not overlap

Loop corrections to $\Gamma[H \rightarrow hh]$

• NLO contributions works constructively or destructively $\cos(\beta - \alpha) > 0 \cdots \cos(\beta - \alpha) < 0 \cdots destructively$

 $\Gamma_{\rm NLO}[H \rightarrow hh] = \left| \begin{array}{c} \cos(\beta - \alpha) \\ - - \left| \begin{array}{c} 2 \\ - \end{array} \right|^2 + 2 \operatorname{Re} \left[\begin{array}{c} - \cos(\beta - \alpha) \\ - - \left| \begin{array}{c} 2 \\ - \end{array} \right|^2 \right]$ Decoupling? Or Non-decoupling? $\Phi = H, A, H^{\pm}$ Scalar self couplings $M^2 \gg \lambda_{\Phi} v^2 \ (m_{\Phi}^2 \simeq M^2) \ \cdots$ Decoupling $m_{\Phi}^2 \cong \dot{\lambda}_{\Phi} v^2 + M^2$ $M^2 \simeq \lambda' v^2 \cdots$ Non-decoupling $\cos(\beta - \alpha) \ll 1$ case Φ $\Phi = H, A, H^{\pm}$ $\lambda_{H\Phi\Phi} \sim \frac{1}{v} (m_{\rm H}^2 - M^2)$ $\lambda_{h\Phi\Phi} \sim \frac{1}{n} (m_{\Phi}^2 - M^2)$ Φ Н Φ h $(m_{A,H^{\pm}}-m_{H}
eq 0)$ case

Even if $m_{\rm H}^2 \simeq M^2$, corrections of H^{\pm} , A loop diagrams are not suppressed.

Correlation between $H \rightarrow hh$ and $h \rightarrow WW^{*}^{14}$

Correlation between BR($H \rightarrow hh$) and BR($h \rightarrow WW^*$) is changed from LO by O(10)%.

Study of radiative corrections is essentially important for direct searches of additional Higgs bosons.

Correlation between $A \rightarrow Zh$ and $h \rightarrow ZZ^*$

15

BR[$A \rightarrow Zh$] also receives O(10)% correction if tan $\beta \simeq 2$.

Correlation between BR($A \rightarrow Zh$) and $\Delta R (h \rightarrow ZZ^*)$ is significantly changed from LO.

- LHC results of h₁₂₅ measurements indicate "nearly alignment", where additional Higgs bosons' decays are very interesting !!
- Study of radiative corrections to decays of both additional Higgs bosons and h_{125} are essentially important.
- We show results of BR[Higgs to Higgs decays] and BR[*h*₁₂₅] including radiative corrections.
- BR[$H \rightarrow hh$] with NLO correction can change LO prediction by O(10)%. BR[$A \rightarrow Zh$] also also receives O(10)% correction if tan $\beta \approx 2$.
- Correlations between $A \rightarrow Zh / H \rightarrow hh$ and $h \rightarrow VV^*$ are significantly changed from LO.
- We will provide H-COUP ver.3.

Thank you for your attention !!

Backup

Deviations in BR

Deviations in BR

Searchable regions in nearly-alignment

Wide parameter region is expected to be surveyed by "Higgs to Higgs decays" such as $H \rightarrow hh$ and $A \rightarrow Zh$.

But, they are results at tree level.

Radiative corrections should be included in the analyses.

H production

```
\cos(\beta - \alpha) > 0
```


13TeV LHC

H production

 $\cos(\beta - \alpha) < 0$

bottom associated process(pp \rightarrow H(bb)) 13TeV LHC

Correlation between $A \rightarrow Zh$ and $h \rightarrow ZZ^*$

H⁺ decays

NPB 973 (2021) 115581, Aiko, Kanemura, Sakurai

H⁺ decays

NPB 973 (2021) 115581, Aiko, Kanemura, Sakurai

Correlation between $H \rightarrow hh$ and hhh

Radiative corrections to λ_{hhh} and BR[$H \rightarrow hh$] are correlated strongly

Signal strength

hep-ph: 2209.07510

Coupling measurements

hep-ph: 2209.07510