Constraining CP4 3HDM with meson oscillations

Igor Ivanov

School of Physics and Astronomy, SYSU, Zhuhai

HPNP 2023, Osaka, Japan

June 9th, 2023

Based on: D. Zhao, I.P.I., R. Pasechnik, P. Zhang, JHEP 04 (2023) 116 and work in progress

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023

< 🗆 🕨

Э

2/26

∍⊧

Sac

Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism

HPNP: Higgs as a probe of New Physics

Maybe Higgs is not alone \rightarrow extended scalar sectors

I am fascinated by models with three scalar doublets (3HDM).

They offer novel opportunities which are not available in the 2HDM (+ singlets).

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023 3/26

naa

Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism

HPNP: Higgs as a probe of New Physics

Maybe Higgs is not alone \rightarrow extended scalar sectors

I am fascinated by models with three scalar doublets (3HDM).

They offer novel opportunities which are not available in the 2HDM (+ singlets).

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023 3/26

Sac

Multi-Higgs model building

Many new fields \rightarrow many interaction terms \rightarrow lots of free parameters + often intractable analytically.

Imposing global symmetries: a way to proceed, e.g. Ishimori et al, 1003.3552.

Why imposing global symmetries?

- fewer parameters, often tractable analytically \rightarrow anchor structures in the vast parameter space of the general model;
- robust way of achieving desired pheno features;
- but, of course, one needs to draw the map

symmetry groups \Leftrightarrow phenomenology

within each class of multi-Higgs models.

Sar

Many new fields \rightarrow many interaction terms \rightarrow lots of free parameters + often intractable analytically.

Imposing global symmetries: a way to proceed, e.g. Ishimori et al, 1003.3552.

Why imposing global symmetries?

- fewer parameters, often tractable analytically \rightarrow anchor structures in the vast parameter space of the general model;
- robust way of achieving desired pheno features;
- but, of course, one needs to draw the map

symmetry groups \Leftrightarrow phenomenology

within each class of multi-Higgs models.

= nar

A dilemma in symmetry-based multi-Higgs model building:

- Large symmetry groups → very few free parameters, nicely calculable, very predictive, but conflicts experiment.
- Small symmetry groups → many free parameters, compatible with experiment but not quite predictive.

I will show a peculiar model based on three Higgs doublets (3HDM) which

- assumes very little: the minimal model realizing a particular symmetry;
- this symmetry is unusual: generalized CP-symmetry of order 4 (CP4);
- $\bullet\,$ remarkable connections between the scalar and Yukawa sectors $\rightarrow\,$ predictions.

In short, a good balance of minimality, predictive power, and theoretical flair.

Sar

• □ ▶ • □ ▶ • □ ▶ • □ ▶

A dilemma in symmetry-based multi-Higgs model building:

- Large symmetry groups → very few free parameters, nicely calculable, very predictive, but conflicts experiment.
- Small symmetry groups → many free parameters, compatible with experiment but not quite predictive.
- I will show a peculiar model based on three Higgs doublets (3HDM) which
 - assumes very little: the minimal model realizing a particular symmetry;
 - this symmetry is unusual: generalized CP-symmetry of order 4 (CP4);
 - $\bullet\,$ remarkable connections between the scalar and Yukawa sectors $\rightarrow\,$ predictions.

In short, a good balance of minimality, predictive power, and theoretical flair.

Sac

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

CP4 3HDM

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023

(日)

≣ 5/26

996

In QFT, CP is not uniquely defined a priori.

- phase factors $\phi(\vec{r}, t) \xrightarrow{CP} e^{i\alpha} \phi^*(-\vec{r}, t)$ [Feinberg, Weinberg, 1959],
- with N scalar fields ϕ_i , the general CP transformation is

$$\phi_i \xrightarrow{CP} X_{ij}\phi_j^*, \quad X \in U(N).$$

If \mathcal{L} is invariant under CP with any X, it is explicitly CP-conserving [Grimus, Rebelo, 1997; Branco, Lavoura, Silva, 1999].

• NB: The "standard" convention $\phi_i \xrightarrow{CP} \phi_i^*$ is basis-dependent!

Squaring the *CP* transformation:

$$\phi_i \xrightarrow{CP} X_{ij} \phi_j^* \xrightarrow{CP} X_{ij} (X_{jk}^* \phi_k) = (XX^*)_{ik} \phi_k \,.$$

The transformation $(CP)^2 = XX^*$ does not have to be identity! It may happen than $(CP)^k = \mathbb{I}$ for k > 2.

CP-symmetry can be of a higher order k > 2.

The usual CP = CP2, the first non-trivial example is CP4, then CP8, etc.

Sac

3

CP4 3HDM

What is the minimal NHDM realizing CP4 without accidental symmetries? The answer was given in Ivanov, Silva, 1512.09276. Consider the 3HDM with $V = V_0 + V_1$ (notation: $i \equiv \phi_i$), where

$$\begin{split} V_0 &= -m_{11}^2(1^{\dagger}1) - m_{22}^2(2^{\dagger}2 + 3^{\dagger}3) + \lambda_1(1^{\dagger}1)^2 + \lambda_2 \left[(2^{\dagger}2)^2 + (3^{\dagger}3)^2 \right] \\ &+ \lambda_3(1^{\dagger}1)(2^{\dagger}2 + 3^{\dagger}3) + \lambda_3'(2^{\dagger}2)(3^{\dagger}3) + \lambda_4 \left[(1^{\dagger}2)(2^{\dagger}1) + (1^{\dagger}3)(3^{\dagger}1) \right] + \lambda_4'(2^{\dagger}3)(3^{\dagger}2) \,, \end{split}$$

with all parameters real, and

$$V_1 = \lambda_5(3^{\dagger}1)(2^{\dagger}1) + \frac{\lambda_6}{2} \left[(2^{\dagger}1)^2 - (3^{\dagger}1)^2 \right] + \frac{\lambda_8}{2} (2^{\dagger}3)^2 + \frac{\lambda_9}{2} (2^{\dagger}3) \left[(2^{\dagger}2) - (3^{\dagger}3) \right] + h.c.$$

with real $\lambda_{5,6}$ and complex $\lambda_{8,9}$. It is invariant under CP4 $\phi_i \xrightarrow{CP} X_{ij}\phi_j^*$ with

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$$
, $XX^* = \operatorname{diag}(1, -1, -1)$.

Igor Ivanov (SYSU, Zhuhai)

< □ ▷ < @ ▷ < 差 ▷ < 差 ▷ 差 の < ៚ s 9/06/2023 8/26 A group-theoretic peculiarity: the symmetry group generated by

$$\phi_i \xrightarrow{CP} X_{ij}\phi_j^*$$
, with $X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$,

is the abelian group \mathbb{Z}_4 but it unavoidably mixes Higgs families.

There is no basis change which makes X diagonal.

This feature leads to important phenomenological consequences.

SQC

э

- *CP*-conserving 3HDMs based on CP4 and the usual CP can be distinguished, at least in principle [Haber, Ogreid, Osland, Rebelo, 1808.08629].
- The presence of CP4 can be detected in a basis-independent way [Ivanov, Nishi, Silva, Trautner, 1810.13396].
- If the minimum conserves CP4 → scalar DM stabilized by CP4 → peculiar DM properties and evolution [Ivanov, Silva, 2016; Ivanov, Laletin, 2018].
- CP4 can be extended to the Yukawa sector → flavored CP4 3HDM. But then it must be spontaneously broken → patterns in the flavor sector [Ferreira et al, 1711.02042].

- *CP*-conserving 3HDMs based on CP4 and the usual CP can be distinguished, at least in principle [Haber, Ogreid, Osland, Rebelo, 1808.08629].
- The presence of CP4 can be detected in a basis-independent way [Ivanov, Nishi, Silva, Trautner, 1810.13396].
- If the minimum conserves CP4 → scalar DM stabilized by CP4 → peculiar DM properties and evolution [Ivanov, Silva, 2016; Ivanov, Laletin, 2018].
- CP4 can be extended to the Yukawa sector → flavored CP4 3HDM. But then it must be spontaneously broken → patterns in the flavor sector [Ferreira et al, 1711.02042].

- *CP*-conserving 3HDMs based on CP4 and the usual CP can be distinguished, at least in principle [Haber, Ogreid, Osland, Rebelo, 1808.08629].
- The presence of CP4 can be detected in a basis-independent way [Ivanov, Nishi, Silva, Trautner, 1810.13396].
- If the minimum conserves CP4 → scalar DM stabilized by CP4 → peculiar DM properties and evolution [Ivanov, Silva, 2016; Ivanov, Laletin, 2018].
- CP4 can be extended to the Yukawa sector → flavored CP4 3HDM. But then it must be spontaneously broken → patterns in the flavor sector [Ferreira et al, 1711.02042].

3

The flavored CP4 3HDM

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023

< □ > < 同 > < 回 >

< ∃⇒

≣ 10/26

JOC P

CP4-symmetric quark sector

Extending CP4 to the Yukawa sector: $\psi_i \to Y_{ij} \psi_i^{CP}$, where $\psi^{CP} = \gamma^0 C \bar{\psi}^T$.

$$-\mathcal{L}_{Y} = \bar{q}_{L}\Gamma_{a}d_{R}\phi_{a} + \bar{q}_{L}\Delta_{a}u_{R}\tilde{\phi}_{a} + h.c.$$

is invariant under CP4 with known X_{ab} if

$$(Y^L)^{\dagger}\Gamma_a Y^d X_{ab} = \Gamma_b^*, \quad (Y^L)^{\dagger}\Delta_a Y^u X_{ab}^* = \Delta_b^*.$$

Matrices *Y*'s can be brought to the form:

$$Y = egin{pmatrix} 0 & e^{ilpha} & 0 \ e^{-ilpha} & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} \,,$$

with α_L , α_{dR} , α_{uR} being free parameters.

Solved in Ferreira et al, $1711.02042 \rightarrow \text{only four options exist.}$

SQC

CP4-symmetric quark sector

case A: $\Gamma_1 \simeq$ arbitrary real matrix, $\Gamma_{2,3} = 0$. case B_1

$$\Gamma_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ g_{31} & g_{31}^* & g_{33} \end{pmatrix}, \quad \Gamma_2 = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_3 = \begin{pmatrix} -g_{22}^* & -g_{21}^* & -g_{23}^* \\ g_{12}^* & g_{11}^* & g_{13}^* \\ 0 & 0 & 0 \end{pmatrix}.$$

case B_2

$$\Gamma_1 = \begin{pmatrix} 0 & 0 & g_{13} \\ 0 & 0 & g_{13}^* \\ 0 & 0 & g_{33} \end{pmatrix} , \quad \Gamma_2 = \begin{pmatrix} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ g_{31} & g_{32} & 0 \end{pmatrix} , \quad \Gamma_3 = \begin{pmatrix} g_{22}^* & -g_{21}^* & 0 \\ g_{12}^* & -g_{11}^* & 0 \\ g_{32}^* & -g_{31}^* & 0 \end{pmatrix} .$$

case B_3

$$\Gamma_1 = \begin{pmatrix} g_{11} & g_{12} & 0 \\ -g_{12}^* & g_{11}^* & 0 \\ 0 & 0 & g_{33} \end{pmatrix} , \quad \Gamma_2 = \begin{pmatrix} 0 & 0 & g_{13} \\ 0 & 0 & g_{23} \\ g_{31} & g_{32} & 0 \end{pmatrix} , \quad \Gamma_3 = \begin{pmatrix} 0 & 0 & -g_{23}^* \\ 0 & 0 & g_{13}^* \\ g_{32}^* & -g_{31}^* & 0 \end{pmatrix} .$$

Igor Ivanov (SYSU, Zhuhai)

9/06/2023 12/26

= nar

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

When combining up and down quarks, need to match α_L : 8 combinations.

$$\begin{array}{ll} (A^{down}, A^{up}) \,, & (A^{down}, B_2^{up}) \,, & (B_2^{down}, A^{up}) \,, & (B_2^{down}, B_2^{up}) \,, \\ (B_1^{down}, B_1^{up}) \,, & (B_1^{down}, B_3^{up}) \,, & (B_3^{down}, B_1^{up}) \,, & (B_3^{down}, B_3^{up}) \,. \end{array}$$

- case (A, A) implies real CKM \rightarrow disregarded.
- cases B_1, B_2, B_3 : quark mass matrices

$$M_d = rac{1}{\sqrt{2}} \sum \Gamma_a v_a \,, \quad M_u = rac{1}{\sqrt{2}} \sum \Delta_a v_a^* \,.$$

All vevs v_1v_2 AND v_3 must be nonzero to avoid mass-degenerate quarks.

SQC

3

- Tree-level flavor-changing neutral couplings (FCNC) are a generic feature of multi-Higgs models.
- Unsuppressed FCNCs conflict meson oscillation parameters → need to be eliminated or suppressed (recent review: Sher, 2207.06771).
- 2HDM with natural flavor conservation (2HDM Type I, Type II, etc) as a way to eliminate tree-level FCNC altogether.
- Sufficiently small FCNCs (+ LFV) are welcome → extra handles on non-minimal Higgs sectors.
- BGL models (Branco, Grimus, Lavoura, 1996 + many more): in the 2HDMs with certain symmetries, FCNCs are governed by a product of the CKM matrix elements → naturally suppressed.

SQA

(日) (周) (王) (王)

- Tree-level flavor-changing neutral couplings (FCNC) are a generic feature of multi-Higgs models.
- Unsuppressed FCNCs conflict meson oscillation parameters → need to be eliminated or suppressed (recent review: Sher, 2207.06771).
- 2HDM with natural flavor conservation (2HDM Type I, Type II, etc) as a way to eliminate tree-level FCNC altogether.
- Sufficiently small FCNCs (+ LFV) are welcome → extra handles on non-minimal Higgs sectors.
- BGL models (Branco, Grimus, Lavoura, 1996 + many more): in the 2HDMs with certain symmetries, FCNCs are governed by a product of the CKM matrix elements → naturally suppressed.

SQC

What's the status of FCNCs in the CP4 3HDM?

- CP4 leads to remarkably tight connections between the Yukawa and scalar sectors → no built-in suppression of FCNC!
- Avoiding FCNC from h_{125} via the scalar alignment condition: $m_{11}^2 = m_{22}^2$.
- But then the additional neutral Higgses may exhibit significant FCNCs.

Must be explored in a full scan of the parameter space.

MQ P

What's the status of FCNCs in the CP4 3HDM?

- CP4 leads to remarkably tight connections between the Yukawa and scalar sectors → no built-in suppression of FCNC!
- Avoiding FCNC from h_{125} via the scalar alignment condition: $m_{11}^2 = m_{22}^2$.
- But then the additional neutral Higgses may exhibit significant FCNCs.

Must be explored in a full scan of the parameter space.

- In Ferreira et al, 1711.02042, we reported the first pheno scan of the parameter space (theory constraints, EWPT, fermion masses and mixing, K, B, B_s oscillation parameters) → many viable parameter space points found.
- But almost all had light charged Higgses, $m_{H_{n,n}^{\pm}} < m_t$ leading to

 $t \to H^+ d_i , \quad H^+ \to \bar{d}_i u_j ,$

with a variety of $H^+d_iu_j$ coupling patterns.

- In Ivanov, Obodenko, 2104.11440 we checked these points against
 - the total $\Gamma_t = 1.42^{+0.19}_{-0.15}$ GeV [PDG],
 - $Br(t \rightarrow H^+b) \times Br(H^+ \rightarrow c\bar{b}) < 0.5\%$ based on [CMS, 2018],
 - $Br(t \rightarrow H^+b) \times Br(H^+ \rightarrow c\bar{s}) < 0.25\%$ based on [CMS, 2020]

and excluded almost all of them.

Ma C

- In Ferreira et al, 1711.02042, we reported the first pheno scan of the parameter space (theory constraints, EWPT, fermion masses and mixing, K, B, B_s oscillation parameters) → many viable parameter space points found.
- But almost all had light charged Higgses, $m_{H_{2,2}^{\pm}} < m_t$ leading to

$$t o H^+ d_i , \quad H^+ o ar d_i u_j ,$$

with a variety of $H^+d_iu_j$ coupling patterns.

- In Ivanov, Obodenko, 2104.11440 we checked these points against
 - the total $\Gamma_t = 1.42^{+0.19}_{-0.15}$ GeV [PDG],
 - $Br(t \rightarrow H^+b) \times Br(H^+ \rightarrow c\bar{b}) < 0.5\%$ based on [CMS, 2018],
 - ▶ $Br(t \rightarrow H^+b) \times Br(H^+ \rightarrow c\bar{s}) < 0.25\%$ based on [CMS, 2020]

and excluded almost all of them.

Igor Ivanov (SYSU, Zhuhai)

SQA

(日) (同) (日) (日) (日)

Exploring CP4 3HDM in a smart way

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023

∃ ⊳

≣ 16/26

500

Lessons from 1711.02042 + 2104.11440:

- FCNC in the up-quark sector (such as *D*-meson oscillations) must also be checked → impact on the charged Higgs patterns.
- The usual scanning procedure

random seed point in Γ_i , $\Delta_i \Rightarrow \text{ fit } m_q$, CKM

is very time consuming: many trial points are thrown away.

• A more efficient scanning procedure is needed:

start with m_q , CKM \Rightarrow reconstruct Γ_i , Δ_i

If this inversion is feasible, every trial point will give a viable model.

• Get a feeling of the FCNC before undertaking the full scan.

Lessons from 1711.02042 + 2104.11440:

- FCNC in the up-quark sector (such as *D*-meson oscillations) must also be checked → impact on the charged Higgs patterns.
- The usual scanning procedure

random seed point in Γ_i , $\Delta_i \implies \text{fit } m_q$, CKM

is very time consuming: many trial points are thrown away.

• A more efficient scanning procedure is needed:

start with m_q , CKM \Rightarrow reconstruct Γ_i , Δ_i

If this inversion is feasible, every trial point will give a viable model.

• Get a feeling of the FCNC before undertaking the full scan.

Igor Ivanov (SYSU, Zhuhai)

Scanning CP4 3HDM Yukawa sector: the usual way

Down quarks (\mathcal{H}_i^0 = neutral scalars in the Higgs basis):

$$\begin{split} \bar{d}_{L}^{0}(\Gamma_{1}\phi_{1}^{0}+\Gamma_{2}\phi_{2}^{0}+\Gamma_{3}\phi_{3}^{0})d_{R}^{0} &= \frac{\sqrt{2}}{v}\bar{d}_{L}^{0}(\mathcal{H}_{1}^{0}\mathcal{M}_{d}^{0}+\mathcal{H}_{2}^{0}\mathcal{N}_{d2}^{0}+\mathcal{H}_{3}^{0}\mathcal{N}_{d3}^{0})d_{R}^{0} \\ &= \frac{\sqrt{2}}{v}\bar{d}_{L}(\mathcal{H}_{1}^{0}\mathcal{D}_{d}+\mathcal{H}_{2}^{0}\mathcal{N}_{d2}+\mathcal{H}_{3}^{0}\mathcal{N}_{d3})d_{R} \end{split}$$

where 0 in d_R^0 , N_{d2}^0 etc. means "before the quark fields rotation".

= nar

18/26

Scanning CP4 3HDM Yukawa sector: the usual way

Down quarks (\mathcal{H}_i^0 = neutral scalars in the Higgs basis):

$$\begin{split} \bar{d}_{L}^{0}(\Gamma_{1}\phi_{1}^{0}+\Gamma_{2}\phi_{2}^{0}+\Gamma_{3}\phi_{3}^{0})d_{R}^{0} &= \frac{\sqrt{2}}{v}\bar{d}_{L}^{0}(\mathcal{H}_{1}^{0}\mathcal{M}_{d}^{0}+\mathcal{H}_{2}^{0}\mathcal{N}_{d2}^{0}+\mathcal{H}_{3}^{0}\mathcal{N}_{d3}^{0})d_{R}^{0} \\ &= \frac{\sqrt{2}}{v}\bar{d}_{L}(\mathcal{H}_{1}^{0}\mathcal{D}_{d}+\mathcal{H}_{2}^{0}\mathcal{N}_{d2}+\mathcal{H}_{3}^{0}\mathcal{N}_{d3})d_{R} \end{split}$$

where 0 in d_R^0 , N_{d2}^0 etc. means "before the quark fields rotation". The usual scanning procedure:

Igor Ivanov (SYSU, Zhuhai)

9/06/2023

≣ 18/26

500

Scanning CP4 3HDM Yukawa sector: inversion

Inversion:

From m_q, CKM to M⁰_d, M⁰_u: specific quark rotation matrices needed.
From M⁰_d, M⁰_u to Γ_i, Δ_i: a bonus feature of the CP4 3HDM.

200

Scanning CP4 3HDM Yukawa sector: inversion

Inversion:

From m_q, CKM to M⁰_d, M⁰_u: specific quark rotation matrices needed.
From M⁰_d, M⁰_u to Γ_i, Δ_i: a bonus feature of the CP4 3HDM.

The goal is to express FCNC matrices N_d , N_u via physical quark observables and quark rotation parameters.

lass hansy (SVSII 7huhsi)	CD4 2HDM and meson assillations	0 /06 /2022	10/26	
igor ivaliov (3130, Zhunai)	CF4 JIIDIWI and meson oscillations	9/00/2023	19/20	

- In Zhao, Ivanov, Pasechnik, Zhang, 2302.03094, we found expressions for N_d 's and N_u 's for all Yukawa sectors of the CP4 3HDM (trivial for A, non-trivial for B_1 , B_2 , B_3).
- Remarkably, N_{d2} and N_{u2} are similar to the BGL-like models and offer some control over FCNCs. For example, in case B₁ we get:

$$(N_{d2})_{ij} = \coteta \ m_{d_j} \delta_{ij} - rac{m_{d_j}}{c_eta s_eta} (V_{dL,3i})^* V_{dL,3j} \, .$$

• However N_{d3} and N_{u3} show completely different patterns.

Igor Ivanov (SYSU, Zhuhai)

Let's gain some intuition with a toy model:

$$V_{dL}, V_{dR}, V_{uL}, V_{uR} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix} = \begin{pmatrix} c_{\theta}e^{i\alpha} & s_{\theta}e^{i\zeta} & 0 \\ -s_{\theta}e^{-i\zeta} & c_{\theta}e^{-i\alpha} & 0 \\ 0 & 0 & e^{i\gamma} \end{pmatrix}$$

イロト (雪) (ヨ) (ヨ)

Let's gain some intuition with a toy model:

$$V_{dL}, V_{dR}, V_{uL}, V_{uR} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix} = \begin{pmatrix} c_{\theta}e^{i\alpha} & s_{\theta}e^{i\zeta} & 0 \\ -s_{\theta}e^{-i\zeta} & c_{\theta}e^{-i\alpha} & 0 \\ 0 & 0 & e^{i\gamma} \end{pmatrix}$$

Then, in the case B_1 , we get

$$N_{d2} = \begin{pmatrix} m_d \cot \beta & 0 & 0 \\ 0 & m_s \cot \beta & 0 \\ 0 & 0 & -m_b \tan \beta \end{pmatrix},$$
$$N_{d3} = \frac{1}{s_\beta} \begin{pmatrix} -m_s c_{2\theta} & -m_s s_{2\theta} e^{-i(\alpha - \zeta)} & 0 \\ -m_d s_{2\theta} e^{i(\alpha - \zeta)} & m_d c_{2\theta} & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

CP4 feature: $\Phi_3 d\bar{d} \propto m_s$, not m_d ; $\Phi_3 d\bar{s} \propto m_s$, not $\sqrt{m_d m_s}$.Igor Ivanov (SYSU, Zhuhai)CP4 3HDM and meson oscillations9/06/202321/26

Numerical scan:

- Select specific Yukawa sector of the CP4 3HDM, such as (B_1^{down}, B_1^{up}) .
- Starting from m_q and CKM, scan over matrices V_{dL} , V_{dR} , V_{uR} , which lead M_d^0 and M_u^0 of the correct texture.
- Compute N_d 's and N_u 's. Then, following Nebot, Silva, 1507.07941 write

$$rac{1}{V}ar{d}_{Li}\,(N_d)_{ij}\,d_{Rj}+h.c=ar{d}_i\left(A_{ij}+iB_{ij}\gamma^5
ight)\,d_j\,,$$

where $A = (N_d + N_d^{\dagger})/(2\nu)$, $iB = (N_d - N_d^{\dagger})/(2\nu)$.

• The dimensionless off-diagonal elements of A_{ij} and B_{ij} can be constrained by K, B, B_s and D-meson oscillation parameters. For example, K oscillations constrain the FCNCs of a generic 1 TeV scalar as

$$|a_{ds}| < 3.7 imes 10^{-4} \,, \quad |b_{ds}| < 1.1 imes 10^{-4} \,.$$

For smaller scalar masses, the constraints are tighter.

• Check how different CP4 Yukawa scenarios compare with these constraints.

Igor Ivanov (SYSU, Zhuhai)

Numerical scan:

- Select specific Yukawa sector of the CP4 3HDM, such as (B_1^{down}, B_1^{up}) .
- Starting from m_q and CKM, scan over matrices V_{dL} , V_{dR} , V_{uR} , which lead M_d^0 and M_u^0 of the correct texture.
- Compute N_d 's and N_u 's. Then, following Nebot, Silva, 1507.07941 write

$$\frac{1}{v}\bar{d}_{Li}(N_d)_{ij}d_{Rj}+h.c=\bar{d}_i\left(A_{ij}+iB_{ij}\gamma^5\right)d_j\,,$$

where $A = (N_d + N_d^{\dagger})/(2\nu)$, $iB = (N_d - N_d^{\dagger})/(2\nu)$.

• The dimensionless off-diagonal elements of A_{ij} and B_{ij} can be constrained by K, B, B_s and D-meson oscillation parameters. For example, K oscillations constrain the FCNCs of a generic 1 TeV scalar as

$$|a_{ds}| < 3.7 imes 10^{-4} \,, \quad |b_{ds}| < 1.1 imes 10^{-4} \,.$$

For smaller scalar masses, the constraints are tighter.

● Check how different CP4 Yukawa scenarios compare with these constraints.

Igor Ivanov	(SYSU,	Zhuhai)
-------------	--------	---------

9/06/2023 22/26

Some clarifications.

• This is not yet a full pheno scan. Such a scan requires a combined study of the vast Yukawa + scalar sectors, and it cannot be blind.

• This is a step towards understanding how to do a clever CP4 3HDM scan.

- ▶ What is the typical FCNC magnitude in each Yukawa sector?
- ► How small the FCNCs can in principle become? What controls their smallness?
- ► Can some CP4 3HDM Yukawa sectors be already excluded?

Some clarifications.

- This is not yet a full pheno scan. Such a scan requires a combined study of the vast Yukawa + scalar sectors, and it cannot be blind.
- This is a step towards understanding how to do a clever CP4 3HDM scan.
 - What is the typical FCNC magnitude in each Yukawa sector?
 - ► How small the FCNCs can in principle become? What controls their smallness?
 - ► Can some CP4 3HDM Yukawa sectors be already excluded?

Results the numerical study 2302.03094

- Out of 8 possible CP4 invariant sectors, only two scenarios have chances to yield viable models: (A, B_2) and (B_1, B_1) .
- Other scenarios fail! For example, B_s vs. B for (B_2, B_2) :

FCNCs from N_{d3} are far outside the box even for a 1 TeV scalar!

Igor Ivanov (SYSU, Zhuhai)

CP4 3HDM and meson oscillations

9/06/2023 24/26

Ma C

• A full scan (scalar + Yukawa) of the CP4 3HDM based on these two Yukawa scenarios: (*A*, *B*₂) and (*B*₁, *B*₁). We hope to find benchmark models compatible with all the collider constraints.

• Investigating CP4 invariant lepton sectors.

- $\mathcal{H}_3^0 e \bar{e}$ and $\mathcal{H}_3^0 e \bar{\mu}$ couplings are $\propto m_{\mu}$, instead of m_e !
- This is a key feature of the CP4 symmetry.
- ▶ Perhaps, the recent CMS hint at $H \rightarrow e\mu$ with $m_H = 146$ GeV 2305.18106 can be accommodated within this scenario.
- If so, then a comparable $H \rightarrow ee$ is expected!
- Consequences of CP4 to the neutrino mass models.

- A full scan (scalar + Yukawa) of the CP4 3HDM based on these two Yukawa scenarios: (*A*, *B*₂) and (*B*₁, *B*₁). We hope to find benchmark models compatible with all the collider constraints.
- Investigating CP4 invariant lepton sectors.
 - $\mathcal{H}_3^0 e \bar{e}$ and $\mathcal{H}_3^0 e \bar{\mu}$ couplings are $\propto m_{\mu}$, instead of $m_e!$
 - This is a key feature of the CP4 symmetry.
 - ▶ Perhaps, the recent CMS hint at $H \rightarrow e\mu$ with $m_H = 146$ GeV 2305.18106 can be accommodated within this scenario.
 - If so, then a comparable $H \rightarrow ee$ is expected!
- Consequences of CP4 to the neutrino mass models.

- A full scan (scalar + Yukawa) of the CP4 3HDM based on these two Yukawa scenarios: (*A*, *B*₂) and (*B*₁, *B*₁). We hope to find benchmark models compatible with all the collider constraints.
- Investigating CP4 invariant lepton sectors.
 - $\mathcal{H}_3^0 e\bar{e}$ and $\mathcal{H}_3^0 e\bar{\mu}$ couplings are $\propto m_{\mu}$, instead of m_e !
 - This is a key feature of the CP4 symmetry.
 - ▶ Perhaps, the recent CMS hint at $H \rightarrow e\mu$ with $m_H = 146$ GeV 2305.18106 can be accommodated within this scenario.
 - If so, then a comparable $H \rightarrow ee$ is expected!

• Consequences of CP4 to the neutrino mass models.

- A full scan (scalar + Yukawa) of the CP4 3HDM based on these two Yukawa scenarios: (*A*, *B*₂) and (*B*₁, *B*₁). We hope to find benchmark models compatible with all the collider constraints.
- Investigating CP4 invariant lepton sectors.
 - $\mathcal{H}_3^0 e\bar{e}$ and $\mathcal{H}_3^0 e\bar{\mu}$ couplings are $\propto m_{\mu}$, instead of m_e !
 - This is a key feature of the CP4 symmetry.
 - ▶ Perhaps, the recent CMS hint at $H \rightarrow e\mu$ with $m_H = 146$ GeV 2305.18106 can be accommodated within this scenario.
 - If so, then a comparable $H \rightarrow ee$ is expected!
- Consequences of CP4 to the neutrino mass models.

Conclusions

- CP4 3HDM is the minimal model implementing a CP symmetry of order 4 (CP4) without accidental symmetries.
- CP4 can be extended to the Yukawa sector \rightarrow very characteristic flavor sector.
- Out of 8 possible CP4 invariant Yukawa sectors, only two scenarios —

 (A, B₂) and (B₁, B₁) lead to viable models!

Tired of 2HDMs? Try CP4 3HDM

- based on a single symmetry assumption,
- quite predictive with rich phenomenology,
- analytical insights guide numerical exploration.