Leading two-loop corrections to the Higgs di-photon decay in the inert doublet model

Masashi Aiko (KEK)

In collaboration with Shinya Kanemura (Osaka University), Johannes Braathen (DESY), Taisuke Katayose

Work in progress

Higgs as a Probe of New Physics 2023 (2023/06/09 Osaka)

Introduction

Problems in the SM

- Dark matter (DM)
- Baryon asymmetry of the universe
- Neutrino tiny mass etc.

SM must be extended to solve these problems.

Scalar DM

Discrete symmetry (e.g. Z_2 symmetry) stabilizes additional scalars.

- DM relic density can be explained via the freeze-out mechanism
- Testable through many channels
 - DM direct detection, collider search, indirect search, etc.

Scalar DM can be tested in current and future experiments.

Inert Doublet Model (IDM)

The model with two scalar doublets Φ_1 and Φ_2 with unbroken Z_2 symmetry. $V(\Phi_1, \Phi_2) = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2}\lambda_1 |\Phi_1|^4 + \frac{1}{2}\lambda_2$ $+\lambda_{3}|\Phi_{1}|^{2}|\Phi_{2}|^{2}+\lambda_{4}|\Phi_{1}^{\dagger}\Phi_{2}|^{2}+\frac{1}{2}\lambda_{5}[$

lnert scalars (H, A, and H⁺) are Z_2 odd \rightarrow We take H as a DM candidate.

Parameters $v = 246 \text{ GeV}, m_h = 125 \text{ G}$

DM scenario

There are two scenarios, where DM relic abundance can be explained under the bound of direct detection. A. Arhrib et al. JCAP06 (2014), A. Balyaev et al. PRD97 (2018)

1. Higgs resonance scenario ($m_H \approx m_h/2$)

2. Heavy mass scenario (500 GeV $\leq m_H$)

$$\frac{2}{2} |\Phi_2|^4 \qquad \qquad \Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$$

GeV),
$$m_H$$
, m_A , m_{H^\pm} , μ_2^2 , λ_2

We focus on the testability of the DM scenario via Higgs measurements.

Higgs to diphoton decay

Higgs to diphoton decay is useful channel to study the IDM.

$$C_{h\gamma\gamma} = \frac{\alpha_{\rm em}}{4\pi} \left[\sum_{f} N_c^f Q_f^2 I_F(\tau_f) + I_V(\tau_W) \right]$$

Especially, in the Higgs resonance scenario,

- $m_H \approx m_h/2$
- . $m_H^2 \approx \mu_2^2$ to avoid DM direct detection.

$$C_{h\gamma\gamma,S} \approx -\frac{\alpha_{\rm em}}{6\pi v} \left(1 - \frac{m_H^2}{m_{H^{\pm}}^2}\right) \quad \text{for} \quad \tau_{H^{\pm}} \ll$$

Additional Higgs contibutions do not decouple.

What is the impact of two-loop effects?

S. Kanemura, M. Kikuchi and K. Sakurai, PRD94 (2016)

Higgs Low-energy Theorem

Leading contributions can be evaluated by using the Higgs low-energy theorem.

$$C_{h\gamma\gamma} = \frac{\partial}{\partial v}$$

Taking the derivative with respect to the vacuum expectation value corresponds to the insertion of the Higgs leg with zero-momentum.

We calculate purely scalar contributions to the photon two-point function at the two-loop level and apply the Higgs low-energy theorem.

J. Gunion et al. The Higgs Hunter's Guide and refs. therein. B. Kniehl and M. Spira, Z. Phys. C69 (1995)

 $\Pi_{\gamma\gamma}(0)'$ in $m_h^2 \to 0$

Higgs to diphoton at two-loop

SM contributions

QCD: A. Djouadi, Phys. Rept. 457 (2008) and refs. therein Two-loop EW: G. Degrassi, F. Maltoni, NPB724 (2005), S. Actis et al. NPB811 (2009)

Full two-loop EW contributions and higher-order QCD corrections are included.

IDM contributions

Purely scalar and fermion-scalar contributions are included. Calculations are performed in the on-shell scheme, and we have checked

- Cancelation of the UV divergence
- Cancelation of the IR divergence $(\ln m_{G^{\pm}/G^0}^2)$
- Ward-Takahashi identity: $\Pi_{\gamma\gamma,T}(0) = 0$

We have taken the gauge-less limit $(g, g' \rightarrow 0)$ while keeping the weak-mixing angle fixed. S. Hessenberger and W. Hollik, EPJC77 (2017)

Higgs resonant scenario

Numerical analysis

- Perturbative unitarity, vacuum stability, and inert vacuum condition are imposed.
- . Value of μ_2^2 is determined so that DM relic abundance is satisfied. micrOMEGAs, CPC176 (2007)
- DM direct detection, collider searches, and electroweak precision tests are also imposed.

HL-LHC expectation

CYRM-2019-007.221, [hep-ph] 1902.00134

2.9% (CMS), 3.7% (ATLAS)

Two-loop contributions are important to study the Higgs resonant scenario at the HL-LHC

MA, Braathen, Kanemura, preliminary

Motivation

• Higgs to diphoton decay is useful channel to study the IDM, especially for the Higgs resonance scenario. \implies What is the impact of two-loop corrections?

New points

 Leading scalar and fermion-scalar contributions are calculated by using Higgs lowenergy theorem

What we found

• Two-loop contributions increase the magnitude of $\Delta \kappa_{\gamma\gamma}$, and could be tested at future colliders such as HL-LHC.

Relic abundance

DM direct detection

LZ Collaboration: 2207.03764 [hep-ex]

XENONnT, 2303.14729 [hep-ex]

DM direct detection

Collider bounds

Direct searches at LEP

 $e^+e^- \rightarrow H^+H^-$

G. Abbiendi et al. EPJC35 (2004) A. Pierce and J. Thaler, JHEP08 (2007)

 $e^+e^- \rightarrow HA$

E. Lundstrom et al. PRD79 (2009)

 $m_A(>m_H) \gtrsim 100 \text{ GeV}$ or $m_A - m_H \lesssim 8 \text{ GeV}$

Electroweak precision test

Higgs invisible decay

Scenario-A

$$m_A = 63 \text{ GeV}, \ m_H = m_{H^{\pm}},$$

 $\mu_2^2 = (61.5)^2 \text{ GeV}^2, \ \lambda_2 = 6.17 \times 10^{-3}$

Scenario-B

$$m_A = 500 \text{ GeV}, \ m_H = m_{H^{\pm}},$$

 $\mu_2^2 = (499.9)^2 \text{ GeV}^2, \ \lambda_2 = 4.97 \times 10^{-3}$

Higgs Triple coupling

S. Kanemura, M. Kikuchi and K. Sakurai, PRD94 (2016)

Higgs to di-photon

Effective coupling at two-loop

$$C_{h\gamma\gamma} = C_{h\gamma\gamma,\text{SM}}^{(1)} + C_{h\gamma\gamma,\text{SM}}^{(2)} + C_{h\gamma\gamma,\text{QCD}}^{(2)} + C_{h\gamma\gamma,\text{QCD}}^{(3)} + C_{h\gamma\gamma,\text{QCD}}^{(1)} + C_{h\gamma\gamma,\text{IDM}}^{(2)}$$

$$C_{h\gamma\gamma,\text{IDM}}^{(1)} = C_{\mathcal{O}(\lambda_3)},$$

$$C_{h\gamma\gamma,\text{IDM}}^{(2)} = C_{\mathcal{O}(\lambda_3^2)} + C_{\mathcal{O}((\lambda_4 + \lambda_5)^2)} + C_{\mathcal{O}((\lambda_4 - \lambda_5)^2)} + C_{\mathcal{O}(\lambda_2)} + C_{\text{WF and VEV}}$$

Higgs resonance scenario

$$\lambda_{3} = \frac{2(m_{H^{\pm}}^{2} - \mu_{2}^{2})}{v^{2}} \simeq \frac{2(m_{H^{\pm}}^{2} - m_{H}^{2})}{v^{2}},$$

$$\lambda_{4} + \lambda_{5} = \frac{2(m_{H}^{2} - m_{H^{\pm}}^{2})}{v^{2}} \simeq -\lambda_{3},$$

$$\lambda_{4} - \lambda_{5} = \frac{2(m_{A}^{2} - m_{H^{\pm}}^{2})}{v^{2}} \simeq 0$$
T parameter

$$\mathcal{L}_{\rm eff} = -\frac{1}{4} C_{h\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$$

Renormalization of μ_2^2

In the $\overline{\text{MS}}$ scheme, $\mathcal{O}(\lambda_2)$ contributions do not decouple even if $m_{\Phi} \to \infty$.

$$C_{\mathcal{O}(\lambda_2)} = \frac{\lambda_2}{3m_{H^{\pm}}^2 v} \Big[-(m_H^2 + m_A^2 + m_A^2) \Big] + \frac{\lambda_2}{3m_{H^{\pm}}^2 v} \Big[-(m_H^2 + m_A^2 + m_A^2) \Big] + \frac{\lambda_2}{3m_{H^{\pm}}^2 v} \Big] \Big]$$

follows the decoupling theorem.

$$\delta\mu_2^2 = \frac{\lambda_2\mu_2^2}{2} \left[\frac{A(m_H)}{m_H^2} + \frac{A(m_A)}{m_A^2} + \frac{4A(m_{H^{\pm}})}{m_{H^{\pm}}^2} \right]$$
$$= 3\lambda_2\mu_2^2\Delta_{\rm UV} - \frac{\lambda_2\mu_2^2}{2} \left[\overline{\ln}m_H^2 + \overline{\ln}m_A^2 + 4\overline{\ln}m_{H^{\pm}}^2 - 6\right]$$

$$C_{\mathcal{O}(\lambda_2)} = \frac{\lambda_2}{3m_{H^{\pm}}^2 v} \left[-(m_H^2 + m_A^2 + 4m_{H^{\pm}}^2) + 6\mu_2^2 \right]$$

- $+4m_{H^{\pm}}^{2})+\mu_{2}^{2}(\overline{\ln}m_{H}^{2}+\overline{\ln}m_{A}^{2}+4\overline{\ln}m_{H^{\pm}}^{2})]$

We renormalize μ_2^2 so that $C_{\mathcal{O}(\lambda_2)}$ is independent of the renormalization scale and

J. Braathen, S. Kanemura, EPJC80 (2020)

$$C_{h\gamma\gamma,\text{IDM}}^{(1)} = C_{\mathcal{O}(\lambda_3)},$$

$$C_{h\gamma\gamma,\text{IDM}}^{(2)} = C_{\mathcal{O}(\lambda_3^2)} + C_{\mathcal{O}((\lambda_4 + \lambda_5)^2)} + C_{\mathcal{O}((\lambda_4 - \lambda_5)^2)} + C_{\mathcal{O}(\lambda_2)} + C_{\text{WF and VEV}}$$

Higgs resonance scenario $C_{h\gamma\gamma} = \frac{\alpha_{\rm em}}{4\pi v} \mathcal{I}$

 $m_H = 60 \text{ GeV}, \ m_A = m_{H^{\pm}} =$

Heavy mass scenario

 $m_H = 500 \text{ GeV}, \ m_A = m_{H^{\pm}} = 7$

500 GeV,
$$\mu_2^2 = 3581 \text{ GeV}^2$$
, $\lambda_2 = 0.1$

$)^{2})$	$\mathcal{I}^{(2)}_{\mathcal{O}((\lambda_4 - \lambda_5)^2)}$	$\mathcal{I}^{(2)}_{\mathcal{O}(\lambda_2)}$	${\cal I}^{(2)}_{ m WF and VEV}$
$)^{-3}$	0	-1.30×10^{-4}	-1.24×10^{-2}

700 GeV,
$$\mu_2^2 = (499.9)^2 \text{ GeV}^2$$
, $\lambda_2 = 0.1$

$)^{2})$	$\mathcal{I}^{(2)}_{\mathcal{O}((\lambda_4 - \lambda_5)^2)}$	$\mathcal{I}^{(2)}_{\mathcal{O}(\lambda_2)}$	$\mathcal{I}^{(2)}_{ m WFandVEV}$
$)^{-3}$	0	-6.46×10^{-5}	-1.07×10^{-3}

Heavy mass scenario

MA, Braathen, Kanemura, preliminary

