HIGGS COUPLINGS TO FERMIONS

Tao Han PITT PACC University of Pittsburgh

HPNP2023 @ Osaka U., June 5, 2023

CONTENTS

(A). Couplings in the EW SM: The good, the bad and the ugly (B). Higgs couplings to fermions: the flavor hierarchy, the theory (C). Higgs couplings at colliders: the practice: LHC, ILC & a μ C y_t , y_c , y_μ and even y_e

(A). THE HIGGS MAGIC

 $m_H = 125.38 \pm 0.14 \text{ GeV}$ PLB 805 (2020) 135425 CMS 138 fb⁻¹ (13 TeV) $\kappa_f \frac{m_f}{\upsilon}$ or $\sqrt{\kappa_V} \frac{m_V}{\upsilon}$ m_u=125.38 GeV р_{sм} = 37.5% **10**⁻¹ 10⁻² Leptons and neutrinos Quarks 10⁻³ Force carriers Higgs boson 10^{-4} Ratio to SM 1.2 1.05 1.0 0.8 0.6 10² 10⁻¹ 10 Particle mass (GeV)

a

The Standard Model – first time ever! • Quantum mechanical

- Relativistic
- Renormalizable
- Perturbatively unitary to exponentially high scales, perhaps to the Planck scale!

All known physics

$$W = \int_{k < \Lambda} [\mathcal{D}g \dots] \exp\left\{\frac{i}{\hbar} \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G}R - \frac{1}{4}F^2 + \bar{\psi}i\mathcal{D}\psi - \lambda\phi\bar{\psi}\psi + |D\phi|^2 - V(\phi)\right]\right\}$$
mplitude current understanding quantum mechanics spacetime gravity strong & matter Higgs

THE HIGGS BLEMISHES

(eV)

D N

5

2

- Particle mass hierarchy
- Patterns of quark, neutrino mixings
- New CP-violation sources?
- Tiny neutrino masses! \ge^{σ}
- Higgs Yukawa couplings as the pivot for all !

THREE TYPES OF MASSES IN SM $M_{W,Z}$ versus m_H versus m_f : The good, the bad, and the ugly (1). $M_{W,Z}$: the good! In the SM: $\phi = \frac{1}{\sqrt{2}} e^{i \Sigma \xi^i L^i} \begin{pmatrix} 0 \\ \nu + H \end{pmatrix}$ $V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 \quad \langle \Phi | \rangle = 0$ $^{-1/2} \approx 246 \,\,\mathrm{GeV}$ $M_W^2 W^{\mu+}W_{\mu}^- (1+\frac{H}{v})^2 + \frac{1}{2}M_Z^2 Z^{\mu}Z_{\mu} (1+\frac{H}{v})^2$ $\rightarrow M_W$, $M_Z = g v/2$ predicted, and: $v = (\sqrt{2}G_F)^{-1/2} \approx 246 \quad \delta m_w^2 \sim m_w^2 \ln(\Lambda/m_w)$ $\stackrel{m_{\mu}^{2}}{\text{BSM: easy to break}} \stackrel{\mu \approx 89}{\xrightarrow{}} \stackrel{\text{GeV}}{\text{SU}(2)} \stackrel{\approx}{\underset{\text{L}}{\approx}} \stackrel{i}{\overline{\text{gauge sector:}}}$ Fundamental scalars (SUSY) • $\langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \sim v^3$ Dynamical breaking (TC, composite ...)

• Non-linear realization (or even "Higgsless")

$$\Phi = \frac{1}{\sqrt{2}}(v+H)U, \quad U = \exp[i\pi^a \tau^a/v]$$

• All calculable and predictable \rightarrow e.g. CDF M_W

 $M_{W,Z}$ versus m_H versus m_f : (2). m_H: the bad! $m_{H} = \sqrt{2} \mu = (2\lambda)^{1/2} v = 125 \text{ GeV}$ In the SM, all fixed: $\rightarrow \lambda \approx 0.13$; $\frac{1}{2}m_H^2 H^2 + \frac{m_H^2}{2m} H^3 + \frac{m_H^2}{8m^2} H^4$ The value itself doesn't matter much ~ EW scale → Not too light (vacuum stable), not too heavy (unitarity). But quantum corrections: $\delta \mu^2 = -\frac{3y_t^2}{8\pi^2} \Lambda^2$ (M²_{PL}...) Quadratically sensitive to the new physics cutoff scale. → "Naturalness" or "Large hierarchy problem"? BSM: easy to construct a scalar model / potential, but model-parameters quadratically sensitive to a new physics scale: $\delta m_H^2 \propto -\frac{k^2}{4\pi^2}\Lambda^2$ (M²_{SUSY}, M²_{comp}, ...) Not seeing other states nearby, we do not understand m_H \rightarrow "Little hierarchy problem" ! Note: the quadratic mass corrections are NOT experimentally observable!

$$\begin{split} \mathbf{M}_{W,Z} \text{ versus } \mathbf{m}_{H} \text{ versus } \mathbf{m}_{f} \text{:} \\ (3). \text{ mf: not governed by the gauge couplings} \\ \mathcal{L}_{Y} \sim -\sum_{i,j} (Y_{ij}^{d} \bar{Q}_{iL} \Phi d_{jR} + Y_{ij}^{u} \bar{Q}_{iL} \tilde{\Phi} u_{jR} \\ Y_{ij}^{e} \bar{L}_{iL} \Phi e_{jR} + Y_{ij}^{\nu} \bar{L}_{iL} \tilde{\Phi} \nu_{jR}) \end{split}$$

- Couplings are fixed by the masses: $\mathcal{L}_Y \sim \sum_f m_f \bar{f} f(1 + H/v) \quad Y_f = \frac{\sqrt{2} m_f}{v}$
- Technically "natural" against quantum corrections: $\frac{\delta m_f \sim m_f \ln(\Lambda/m_w) \text{ (chiral symm)}}{\delta m_f \sim m_f \ln(\Lambda/m_w) \text{ (chiral symm)}}$
 - A Higgs is responsible for our existence!
 - Atoms/chemistry/biology governed by Y_e ~ m_e:

- atomic radius $\propto \frac{1}{m_e}$
- Yt / m_t: not too large for vacuum stability!

$M_{W,Z}$ versus m_H versus m_f : (3). mf: the ugly!

- Vastly different hierarchical masses
- ad hoc flavor mixings and the CPv phase(s)
- Neutrino masses: Dirac vs. Majorana?

BSM: much harder to accommodate!

- Generate multiple mass scales
- Avoid FCNC
- Avoid Excessive CP violation
- Why the flavor mixing aligned with the SM Yukawa form?
 → Minimal Flavor Violation (MFV)

(B). YUKAWA COUPLINGS: (1). Generate flavor hierarchies Horizontal flavor symmetry: Froggatt-Nielson mechanism SM fermions charged $[q_i, u_i, d_i]$ under U(1)_{FN} symmetry broken by $\langle \phi \rangle / M \sim 0.2$ Froggatt & Nielsen (1979)

$$(Y_u)_{ij} \sim \left(\frac{\langle \phi \rangle}{M}\right)^{[q_i] - [u_j]}, \qquad (Y_d)_{ij} \sim \left(\frac{\langle \phi \rangle}{M}\right)^{[q_i] - [d_j]}$$

• Warped extra-dimension: Yukawa couplings determined by the overlapping with the Higgs brane. \rightarrow dual to (partial) composite model. Randall & Sundrun (1999); Huber & Shafi (2001); Agashe et al. (2005)

Planck IR brane Radiative generation of m_f : • brane The 3rd generation @ tree-level Light generations by new particle loops ~ $1/16\pi^2$ ~ 10^{-2} . S. Weinberg (1972)

(2). The Higgs sector extension

• 2HDM (MSSM): well-motivated $(\tan\beta = v_2/v_1; \alpha$ the neutral Higgs mixing) Yagyu; Ferreira; De Curtis;

	Tree-level Normalized Higgs couplings								
	κ_h^u	κ_h^d	κ^e_h	κ_h^V					
Type-I	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\sin(eta-lpha)$					
Type-II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\sin(\beta - \alpha)$	A				
Type-L	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\sin(\beta - \alpha)$					
Type-F	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\sin(eta-lpha)$	Н				

Talks in HPNP2023:

Pilaftsis; Haber; Takeuchi; Song; Dey; Kartayama; Heinemeyer; Muta; Ivanov; Sakurai

Decoupling/ lignment limit: $\kappa'_{s} \rightarrow 1$

Haber & Y. Nir (1990)

• Plus a singlet **S** (NMSSM):

more mixing & flavor physics, connect to dark sector

• Add a triplet $\boldsymbol{\Phi}$ (Type-II seesaw): $\phi^{\pm\pm}, \phi^{\pm}, \phi^{0}$; connect to neutrino Majorana mass For a review, see, i.e., G.C. Branco, M. Sher et al., arXiv:1106.0034 ...

(3). SMEFT

SM Effective Field Theory: a linear representation

SM-like Higgs
$$\boldsymbol{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi^+ \\ v+h+i\phi^0 \end{pmatrix}$$

$$\mathcal{L}_Y \sim \sum_{n=0}^{\infty} \frac{Y_{ij}^n}{\Lambda^{2n}} (\Phi^{\dagger} \Phi)^n \bar{L}_{iL} \Phi e_{jR} \rightarrow m_f = \frac{v}{\sqrt{2}} \sum_{n=0}^{\infty} Y_n^f \frac{v^{2n}}{\Lambda^{2n}}$$

Yukawa coupling deviates from the mass relation! At the dim-6 leading order: $\rightarrow \delta \kappa_f \sim Y_1 \frac{v^2}{\Lambda^2} \sim O(\text{a few\%}) \text{ for } \Lambda \sim 2 \text{ TeV!}$ This is the immediate target @ LHC!

(4). HEFT

Higgs Effective Field Theory: a non-linear representation

$$U = e^{i\phi^a \tau_a/v} \quad \text{with} \quad \phi^a \tau_a = \sqrt{2} \begin{pmatrix} \frac{\phi^0}{\sqrt{2}} & \phi^+ \\ \phi^- & -\frac{\phi^0}{\sqrt{2}} \end{pmatrix}$$
$$L_{\rm Y} \sim -\frac{v}{2\sqrt{2}} \left[\sum_{n \ge 0} y_n \left(\frac{H}{v}\right)^n (\bar{\nu}_L, \bar{\mu}_L) U(1 - \tau_3) \begin{pmatrix} \nu_R \\ \mu_R \end{pmatrix} + \text{h.c.} \right]$$

$$Y_{f}(H) = \frac{\sqrt{2}m_{f}}{v} + \sum_{n=1}^{\infty} y_{fn} (\frac{H}{v})^{n}$$

- The scale for new dynamics is at $\Lambda \sim 4\pi v$ \rightarrow close by! The deviation can be sizable: $\rightarrow \delta \kappa_f \sim Y_1 \frac{H}{v} \sim O(1)$
- Multiple Higgs couplings may be sizeable!

(C). HIGGS COUPLINGS @ COLLIDERS theories in practice

- Seek for more Higgs bosons: H^0 , A^0 , H^{\pm} .
- Continue to search for
 Z', W[±]', T' in light of FN, L-R, composite H, etc.
- Flavor Changing Neutral Currents: *H*→ tc, tq; & μτ, eμ, eτ !
 & possible new CPv phases in Yukawa ...

Cheng & Sher, PRD (1987); G.W.S. Hou, PLB (1992); TH, D. Marfatia, PRL 86, 1442 (2001); Harnik, Kopp, Zupan, arXiv:1209.1397.

In the absence of the new physics discovery:

- Exploring flavor physics is complementary & rewarding.
- Measuring Higgs Yukawa couplings is indispensable: the smaller the coupling is, the more sensitive to deviations!

(1). The most-wanted: y_{t}

The current LHC sensitivity:

$\delta \kappa_t = 0.35^{+0.36}_{-0.34}$ (ATLAS) (ICHEP 2022)

Also, see Sanmay Ganguly & Xiaohu Sun

Future lepton collider sensitivity:

Values in % units		LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
δy_t	Global fit	6.12	2.53	2.08	1.30	0.739	1.48
	Indiv. fit	5.08	1.85	1.80	1.17	0.705	1.26

Table 8: Uncertainties for the top-quark Yukawa coupling at 68% probability for different scenarios, in percentage. The ILC500, ILC550 and CLIC scenarios also include the HL-LHC. The ILC1000 scenario includes also ILC500 and HL-LHC.

EF04 report: https://arxiv.org/pdf/2209.08078.pdf

ttH coupling @ high scales:

1. Yukawa $y_t(Q)$ RGE running: 2. Off-shell probe of EFT operators:

CMS/ATLAS: arXiv:2202.06923; 2304.01532 3.6 σ /3.3 σ observation for off-shell Higgs signal SM width bound: $3.2^{+2.4}_{-1.7} / 4.5^{+3.3}_{-2.5}$ MeV

(See Sanmay Ganguly & Xiaohu Sun)

3. Composite form factors: $\Gamma(q^2/\Lambda^2) = \frac{1}{(1+q^2/\Lambda^2)^n}$

D. Goncalves, TH, S. Mukhopadhyay, arXiv:1710.02149 (PRL, 2017); arXiv:1803.09751; D. Goncalves, TH. I. Leung, H. Qin, arXiv:2012.05272; R. Abraham, D. Goncalves, TH, S.C.I. Leung, H. Qin, arXiv:2012.05272.

(2). The real challenge: y_c Test the 2nd generation couplings: The current LHC sensitivity: $BR_{H \to c\bar{c}}^{SM} = (2.88^{+0.16}_{-0.06})\%$ LHC Run 2: ATLAS $\kappa_c \le 8.5$ [2201.11428], CMS $1.1 < |\kappa_c| < 5.5$ [2205.05550] (See Sanmay Ganguly & Xiaohu Sun) 10 ATLAS κ_c Submitted to JHEP [2207.08615] Standard Mode 68% CL $\mathbf{8} \stackrel{\vdash}{\vdash} \stackrel{H \to ZZ^*, H \to \gamma\gamma,}{=}$ Obs. Combination 95% CL $VH(b\overline{b}), VH(c\overline{c})$ $B_{\rm BSM} = 0$ Upper limit on κ_c of 4.8×SM at 95% CL _√s = 13 TeV, 139 fb⁻¹ Observed Observed Scenario 68% confidence interval 95% confidence interval $B_{\rm BSM} = 0$ [-1.61, 1.70][-2.47, 2.53][-2.63, 3.01][-4.46, 4.81]No assumption $B_{\rm BSM} = B_{\rm invis.} + B_{\rm und.} = 0$ -1 -0.5 0.5 ĸb

HL-LHC sensitivity projection: a factor of few from SM Future HL-LHC: $\kappa_c \leq 3$. [2201.11428]

EF01/02 report: https://arxiv.org/pdf/2209.07510.pdf

Higgs production rate is high: #H@LHC ~ 50 M /ab ! Need new ideas!

• $H \rightarrow J/\psi + \gamma$ $\rightarrow \mu^+ \mu^- + \gamma$ for Higgs coupling to charm

Note: BR(H → J/ψ+γ) = 2.8x10⁻⁶
➢ Dominated by VMD γ*→J/ψ, not H cc coupling.

 \rightarrow This is no use to probe y_c !

Bodwin, Petriello et al. (2013, 2014, 2017); Konig, Neubert (2015)

Higgs production rate is high: #H@LHC ~ 50 M /ab ! A new idea!

• $H \rightarrow J/\psi$ via charm-quark fragmentation:

 $H \to c + \bar{c} + J/\psi (\operatorname{or} \eta_c)$

Enhanced from the fragmentation
 Direct coupling to charm!

Color-singlet (CS) (leading) Color-octet (CO) (sub-leading, ½ of CS)

TH, A. Leibovich, Y. Ma, X.Z. Tan: aXive:2202.08273

• $H \rightarrow J/\psi$ via charm-quark fragmentation:

$$H \to c + \bar{c} + J/\psi \text{ (or } \eta_c)$$

$$TH, A. Leibovich, Y. Ma, X.Z. Tan:aXive:2202.08273$$

$$\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}} (H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathcal{O}^h[\mathbb{N}] \rangle_{!}$$

$$d\hat{\Gamma}_{\mathbb{N}} = \frac{1}{2m_H} \frac{|\mathcal{M}|^2}{\langle \mathcal{O}^{Q\bar{Q}} \rangle} d\Phi_3$$

Calculating the short-distance decay rates, fit the long-distance hadronic matrix elements, we obtain: $BR(H \rightarrow c\bar{c} + J/\psi) = (2.0 \pm 0.5) \times 10^{-5}$ $BR(H \rightarrow c\bar{c} + \eta_c) = (6.0 \pm 1.0) \times 10^{-5}$

> Sensitivity $S \simeq N_{\text{signal}} / \sqrt{N_{\text{Background}}}$ \Rightarrow It is possible to reach 2σ for $\kappa_c \approx 2.4$.

→ At the end, should be better than $J/\psi + \gamma$: $\kappa_c \sim 50$ → May not beat $W/Z+H \rightarrow W/Z+cc$: $\kappa_c \sim 3$ Active study/simulation on-going!

ILC as the Higgs factory $m_h^2 = (p_{e^+}^2 + p_{e^-}^2 - p_{\ell^+}^2 - p_{\ell^-}^2)^2$

See Junping Tian's talk

Data

Signal

Background

 $e^++e^- \rightarrow \mu^+\mu^- + X @ 250 \text{ GeV}$

140

150

120

130

Signal+Background

arXiv:1710.07621, LCC, Fujii et al.

(3). A promising channel: y_{μ} The 2nd generation Y_{μ} : The next hope! The current LHC sensitivity: $BR_{H \rightarrow \mu^{+}\mu^{-}}^{SM} = (2.17 \pm 0.04) \times 10^{-4}$

Current search result: ATLAS: 2.0σ ; CMS 3.0σ

HL-LHC sensitivity projection: $BR(H \rightarrow \mu\mu) < 10\%$

- Assuming the SM width, but won't know it better than a factor of 2-ish
- ILC may not improve this much (low rate)

Plehn & Rainwater, arXiv:hep-ph/0107180; TH & McElrath, arXiv:hep-ph/0201023 (4). Model-independent measurement on y_{μ}

A muon collider Higgs factory: Resonant Production:

$$\sigma(\mu^+\mu^- \to h \to X) = \frac{4\pi\Gamma_h^2 \operatorname{Br}(h \to \mu^+\mu^-)\operatorname{Br}(h \to X)}{(\hat{s} - m_h^2)^2 + \Gamma_h^2 m_h^2}$$

$$\sigma_{peak}(\mu^+\mu^- \to h) = \frac{4\pi}{m_h^2} BR(h \to \mu^+\mu^-)$$

 $\approx 71 \text{ pb at } m_h = 125 \text{ GeV}.$

About O(70k) events produced per fb⁻¹ Requirement: $E_{cm} = m_H$, $\Delta E_{cm} \sim 5$ MeV, $L \sim 1$ fb⁻¹/yr.

(5). The ultimate test : y_e The 1st generation y_e: There is a chance! $y_{\rm e} = \sqrt{2}m_{\rm e}/v = 2.9 \times 10^{-6}$ SM BR($H \to ee$) ~ 5 · 10⁻⁹ $e^+e^- \rightarrow H$ 30 $\delta_{V_{\text{S}_{\text{e+e}}}}$ spread (MeV) Yukawa limits. e⁺e⁻→ H, √s = 125 GeV Energy spread: $5 \times v^{SM}$ 20 $-\delta = 0$ 0.5 $\delta = 4.1 \text{ MeV}$ - δ = 7 MeV **Ionochromatization** 0.4 (g) (lp) α^{ee→ H}(s) (lp) α ---- δ = 15 MeV settings per IP 10 $\delta = 30 \text{ MeV}$ --- δ = 100 MeV $y_e \leq 2 \times y_e^{SM}$ $\delta \boldsymbol{y}_{\boldsymbol{e}} \leq \boldsymbol{0.5} \boldsymbol{y}_{\boldsymbol{e}}$ 3 $\delta y_{p} \leq 0.25 y_{p}$

M. Greco, TH, Z. Liu: https://arxiv.org/abs/1607.03210

¹²⁵ √s (GeV)

125.005

125.01

0.1

124.99

124.995

Accel. Frontier report: https://arxiv.org/pdf/2203.06520.pdf

20 30

100 200 \mathscr{L}_{int} (ab^{-1})

2

2

3 4 5 6 7 10

(6). High-energy option on y_{μ} To enhance the Yukawa coupling effects, multiple Higgs/Goldstone boson production more beneficial.

At 30 TeV: $\delta \kappa_{\mu} \sim 1\%$ - 4%, corresponding to $\Lambda \sim 30$ TeV – 100 TeV.

TH, W. Kilian, N. Kreher, Y. Ma, J. Reuter, T. Striegl, K. Xie: <u>https://arxiv.org/abs/2108.05362;</u> E. Celada, TH, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, K. Xie; to appear.

EF01/02 report: https://arxiv.org/pdf/2209.07510.pdf

Conclusions:

- Higgs couplings to fermions most mysterious: least understood in theory, but rich phenomenology!
- Continue to search for more Higgses, Z', T' ...
- Must look for rare Higgs decays: flavor changing, invisible channels ...
- Measuring Higgs Yukawa couplings: indispensable
- SMEFT sets a target: $\delta \kappa_f \sim Y_1 \frac{v^2}{\Lambda^2} \sim O(\text{a few}\%)$
- HEFT could be close by: $\delta \kappa_f \sim Y_1 \frac{H}{v} \sim O(1)$
- Immediate targets on Yukawa couplings: ttH@high scale; 2nd generations Hμμ & Hcc !
 Push for the next discovery for NP from HP!