BRIEF INTRODUCTION TO MUON COLLIDERS

HPNP 2023 @ Osaka University June 7, 2023

Tao Han Pitt PACC, University of Pittsburgh

A MUON COLLIDER Why muons? Although sharing the same EW interactions, it isn't another electron:

 $m_{\mu} \approx 207 \ m_{e}$ $au(\mu \rightarrow e \overline{\nu}_{e} \nu_{\mu}) \approx 2.2 \ \mu s$ $c\tau \approx 660 \ m.$

Once accelerated: $E_{\mu} \sim 1 \text{ TeV} \rightarrow \gamma \sim 10^4 \rightarrow d = c\gamma\tau = 6,600 \text{ km}$

It is these features: heavy mass, short lifetime that dictate the physics.

Advantages of a muon collider

• Much less synchrotron radiation energy loss than e's:

 $\Delta E \sim \frac{1}{R} \ (\frac{E}{m_{\mu}})^4$

which would allow a smaller and a circular machine, thus likely cost-effective:

- Luminosity scales with c.m. energy/power, ideally $L \sim E^2_{CM}$
- Smaller beam-energy spread: $\Delta E/E \sim 0.1\%$ potentially $\Delta E/E(m_H) \sim 0.01\% - 0.001\%$

• Advantages of a muon collider

- Unlike the proton as a composite particle, E_{CM} efficient in $\mu^+\mu^-$ annihilation, to reach higher new physics threshold $E_{CM} \sim 2 M_{new}$
- Yet, high-energy collisions result in all sort of partons from Initial States Radiation σ_{μμ}~ (1/M_W)² ln²(E_{CM}/M_W)

"Buy one, get one free!"

• Lower (hadronic) background: $\sigma_{pp}(total) \sim 100 \text{ mb}; \sigma_{\mu\mu}(total) \sim 100 \text{ nb}$

• Disadvantages of a muon collider

• Production: Protons on target \rightarrow pions \rightarrow muons: Require sophisticated scheme for μ capture & transport

> • Very short lifetime: in micro-second, Muons cooling in (x,p) 6-dimensions

→ Difficult to make quality beams and a high luminosity

• Beam Induced Backgrounds (BIB) from the decays in the ring at the interacting point

• Neutrino beam dump (environmental hazard) $\sigma_{\nu} \sim G_F^2 E^2 \rightarrow \text{Shielding}?$

Historically

- Concepts mentioned in the 60's
- Early collider design/physics studies in the 90's [*]
- 2011~2016: Muon Accelerator Program formed (MAP): to address key feasibility issues for µC with the proton driver technology
- MAP terminated in 2016, results published in <u>https://iopscience.iop.org/journal/1748-0221/page/extraproc46</u>

[*] Some early work:

- Proceedings of the 1st Workshop on the physics potential and Development of the μμ Coiliders, Napa, California, 1992, Nucl. Inst. Methods. Phys. Res., Sect. A 350, 24 (1994).
 - S-channel Higgs boson production at a muon collider; Barger et al., PRL75 (1995).
- μ⁺ μ Collider: Feasibility study, Muon collider collaboration (July, 1996).
 - Higgs boson physics in the s-channel muon collider, Barger et al., Phys Rep. 186 (1997).
- Status of muon collider research, Muon collider collaboration (Aug., 1999).
- Recent progress on neutrino factory and muon collider research, Muon collider collaboration (July, 2003).

RENEWED INTERESTS Muon Accelerator Project (MAP)

- Protons \rightarrow pions \rightarrow muons
- Transverse ionization cooling achieved by MICE
- Muon emittance exchange demonstrated at FNAL/RAL
- 6D cooling of 5-6 orders needed https://arxiv.org/abs/1907.08562, J.P. Delahauge et al., arXiv:1901.06150/

Noticeable reduction of 9% emittance

Low EMittance Muon Accelerator web.infn.it/LEMMA

45 GeV e⁺

e⁻ at rest

Cooling is not a problem; but high luminosity is challenging: large e⁺ flux of O(10¹⁷/s)!

J.P. Delahauge et al., arXiv:1901.06150

1[±]

New ideas ...

μ **TRISTAN**

Yu Hamada¹, Ryu
ichiro Kitano^{1,3}, Ryutaro Matsudo¹, Hiromasa Takaura¹ and Mitsuhiro Yoshida^{2,3}

¹KEK Theory Center, Tsukuba 305-0801, Japan ²KEK Accelerator department, Tsukuba 305-0801, Japan ³Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan

Abstract

The ultra-cold muon technology developed for the muon g-2 experiment at J-PARC provides a low emittance μ^+ beam which can be accelerated and used for realistic collider experiments. We consider the possibility of new collider experi-

FRIDAY, 9 JUNE

 00:00 → 01:30
 Cunch

 01:30 → 02:45
 Plenary: Plenary 13

 01:30
 muTRISTAN

 Speaker: Ryuichiro Kitano

 02:00
 Probing new physics beyond the Standard Model at multi-TeV muon colliders

 Speaker: Dr Adil Jueid (Institute for Basic Science)

6664v2 [hep-ph] 21 Apr 2022

PHYSICS POTENTIAL

$$\sigma(\mu^+\mu^- \to h \to X) = \frac{4\pi\Gamma_h^2 \operatorname{Br}(h \to \mu^+\mu^-)\operatorname{Br}(h \to X)}{(\hat{s} - m_h^2)^2 + \Gamma_h^2 m_h^2}$$

$$\sigma_{peak}(\mu^+\mu^- \to h) = \frac{4\pi}{m_h^2} BR(h \to \mu^+\mu^-)$$

 $\approx 71 \text{ pb at } m_h = 125 \text{ GeV}$

About O(70k) events produced per fb⁻¹

Those aren't what you would first see when you turned on the machine!

• **EW PDFs at a muon collider:** "partons" dynamically generated $\frac{df_i}{d \ln Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P_{i,j}^I \otimes f_j$

 μ^{\pm} : the valance. ℓ_R , ℓ_L , ν_L and $B, W^{\pm,3}$: LO sea. Quarks: NLO; gluons: NNLO.

TH, Yang Ma, Keping Xie, arXiv:2007.14300

"Semi-inclusive" processes Just like in hadronic collisions: µ+µ⁺ → exclusive particles + remnants

separable sub-processes:

Δ

Higgs pair production & triple coupling:

SM Higgs boson pair production at the LHC HL-LHC 50 ILC500 / C^3 CLIC3000 SM Higgs boson pair production (gluon-gluon fusion - ggF): FCC-ee FCC-hh µ10TeV 40 h 000 000 $\delta\lambda_{\rm hhh} \Lambda_{\rm hhh} (\%)$ h 68% CL **、**000 000 Higgs boson self-coupling Higgs-fermion Yukawa coupling 10

→ dictate EW phase transition & impact on early universe cosmology!

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Comparison
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [41]
Λ/\sqrt{c}_i (TeV)	4.7	7.0	9.0	11	16	(68% C.L.)
$ZZH \ (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [36]
Λ/\sqrt{c}_i (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
$HHH \ (\Delta \kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L.)

Table 7: Summary table of the expected accuracies at 95% C.L. for the Higgs couplings at a variety of muon collider collider energies and luminosities.

TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Heavy Higgs Bosons Production

Pushing the "Naturalness" limit The searches for top quark partners (most wanted in "naturalness"); & gluinos, gauginos ...

→ Higgs mass fine-tune: $\delta m_H/m_H \sim 1\% (1 \text{ TeV}/\Lambda)^2$ Thus, $m_{stop} > 8 \text{ TeV} \rightarrow 10^{-4}$ fine-tune!

WIMP Dark Matter Covering the thermal target

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; arXiv:2203.07351

International Muon Collider Collaboration (IMCC, 2022)

European Commission grant: HORIZON INFRA-DEV

Cordination Committee

Alexej Grudiev Andrea Wulzer Antoine Chance Anton Lechner **Chris Rogers** Christian Carli **Claude Marchand** Daniel Schulte (Study Leader) Donatella Lucchesi Elias Metral Jingyu Tang Luca Bottura Lucio Rossi Mark Palmer Nadia Pastrone (Collaboration Board Chair) Natalia Milas **Roberto Losito** Sergo Jindariani Steinar Stapnes (Steering Board Chair)

US (detector)	Sergo Jindariani			
US (accelerator)	Mark Palmer			
Asia (China)	Jingyu Tang			

Initial Target Parameters

Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV	
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)	
Ν	10 ¹²	2.2	1.8	1.8		
f _r	Hz	5	5	5		
P _{beam}	MW	5.3	14.4	20	28	
С	km	4.5	10	14		
	т	7	10.5	10.5		
ε	MeV m	7.5	7.5	7.5		
σ _E / Ε	%	0.1	0.1	0.1		
σ	mm	5	1.5	1.07		
β	mm	5	1.5	1.07		
3	μm	25	25	25		
σ _{x,v}	μm	3.0	0.9	0.63		

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
		US P5			ESPPU					
Muon collider pre-CDR study Baseline concept development		Initia	l baseline defin	ed						
Documentation			Interim report							
Baseline evaluation				Base	line assessed a	nd R&D dire	ctions identifie	d		
Documentation					Final pre-des	ign report				
CDR study Conceptual design development										
Test programme development Exploratory studies/scope assessment										
Initial concept development										
Documentation					R&D propos	al report, leve	l depends on	funding		
Final concept development										
CDR R&D programme implementation CDR R&D										

Mark Palmer @ 1st IMCC Conference CERN, Oct. 11, 2022

13

Conclusion

The MC option was well-received as a potential Energy Frontier option during Snowmass

- Implementing a US Accelerator R&D Program for Future Colliders would provide a mechanism to:
 - Let US accelerator experts engage with ongoing MC development activities
 - Formally participate in the IMCC
 - Explore potential options for US siting
- Developing critical elements of the design between now and the next Snowmass (and European Strategy Update) is crucial!

Exciting journey ahead!

Lots of recent works!

- D. Buttazzo, D. Redogolo, F. Sala, arXiv:1807.04743 (VBF to Higgs)
- A. Costantini, F. Maltoni, et al., arXiv:2005.10289 (VBF to NP)
- M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, arXiv:2005.10289 (SM Higgs)
- R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, arXiv:2006.16277; arXiv:2101.10334 (g-2, flavor)
- P. Bandyopadhyay, A. Costantini et al., arXiv:2010.02597 (Higgs)
- D. Buttazzo, P. Paradisi, arXiv:2012.02769 (g-2)
- W. Yin, M. Yamaguchi, arXiv:2012.03928 (g-2)
- R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, arXiv:2012.11292 (MD)
- D. Buttazzo, F. Franceschini, A. Wulzer, arXiv:2012.11555 (general)
- G.-Y. Huang, F. Queiroz, W. Rodejohann,
 - arXiv:2101.04956; arXiv:2103.01617 (flavor)
- W. Liu, K.-P. Xie, arXiv:2101.10469 (EWPT)
- Richard Ruiz et al., arXiv:2111.02442 (MadGraph5)
- Numerous Snowmass White papers & summary reports

Muon Smasher's Guide: H. Ali, N. Arkani-Hamed, et al, arXiv:2103.14043 Muon Collider Physics Summary: <u>https://arxiv.org/abs/2203.07256</u> Muon Collider Forum Report: <u>https://arxiv.org/abs/2209.01318</u>