Rare Event Searches Group

NUCLEUS

Rare Event Searches Report, 27th January 2023

Introduction

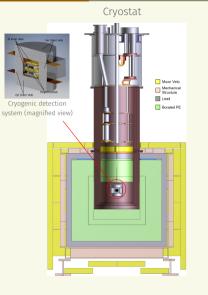
Purpose of NUCLEUS collaboration

• Design, build up and operate an experiment to explore coherent elastic neutrino-nucleus scattering (CEuNS), to be installed at EdF Chooz nuclear power plant

Manpower and financial contributions from Austria, France, Germany, Italy and EU-ERC

RES NUCLEUS manpower

	Group	Experiments	Affiliation	Comments/Funds
Staff scientists				
Jochen Schieck	RES	CRESST, COSINUS, NUCLEUS	HEPHY/TU Wien	
Vasile Mihai Ghete	RES	CRESST, NUCLEUS	HEPHY	
Florian Reindl	RES	CRESST, COSINUS, NUCLEUS	HEPHY/TU Wien	
Markus Friedl	Electronics	COSINUS, NUCLEUS	HEPHY	
PostDocs				
Holger Kluck	RES	CRESST, NUCLEUS	HEPHY	FWF P 34778 , PI: H. Kluck (2021–2025)
PhD students				
Jens Burkhart	RES	CRESST, NUCLEUS	HEPHY	FWF P 34778 (2022-2025)
Master/Project students				
Leo Maran	RES	NUCLEUS	TU Wien	
Technicians				
Christoph Schwertner	Electronics/RES	CRESST, COSINUS, NUCLEUS	HEPHY/TU Wien	
TU Wien group: part of HEPHY/TU Wien NUCLEUS core group				
Hartmut Abele	Prof.	NUCLEUS	TU Wien	
Erwin Jericha	Prof.	NUCLEUS	TU Wien	
Andreas Doblmayer	PhD	NUCLEUS	TU Wien	
Sebastian Dorer	PhD	NUCLEUS	TU Wien	


The NUCLEUS experiment

RES common contributions to CRYOCLUSTER experiments

RES contributions to NUCLEUS experiment

Recent NUCLEUS physics results

NUCLEUS experimental apparatus - overview

Cryogenic detection system - cryogenic calorimeters at $10\,\textrm{mK}$

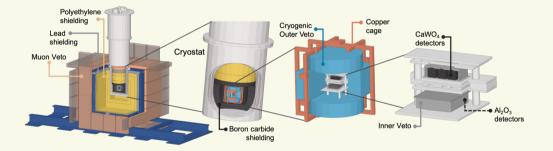
- multi-target approach: two 3x3 arrays of CaWO₄ and Al₂O₃ crystals
- silicon inner veto (veto α/β surface contamination)
- HPGe inner veto (veto of external γ/n background)

Cryostat

• Bluefors cryostat with pulse tube dilution refrigerator at 10 mK

Muon veto

JINST 17 T05020 (2022)


• 5-cm thick plastic scintillators, SiPM and WLS-fibre read out

Passive shield

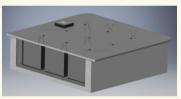
- external layer: 5 cm low radioactivity Pb (reduce ambient γ 's)
- inner layer: 20 cm borated PE (reduce neutrons)

Inner cold shield and Cryogenic muon veto - "close the gaps"

- $\bullet\,$ Pb / PE / B_4C / Cu in the cryostat, thermalized at ${\sim}800{-}900$ mK
- plastic scintillators, SiPM and WLS for cryogenic muon veto

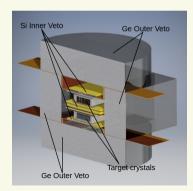
NUCLEUS detection system - fiducial volume

NUCLEUS target detectors


Multi-target approach: two 3×3 arrays

- CaWO₄ crystals (6 g)
 - for background and CEvNS measurement
- Al₂O₃ crystals (4g)
 - essentially for background measurement

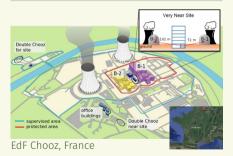
Silicon inner veto


- TES-instrumented holder of crystals
- Veto α/β surface contamination
- Aim for 4π coverage

Silicon inner veto beaker

Germanium outer veto

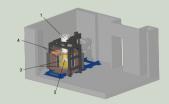
- HPGe crystals, 2.5 cm thick
- Veto of external γ/n background
- Aim for 4π coverage



Chooz experimental site

Very Near Site (VNS)

• 24 m² basement room in an administrative building in the protected area, 3 m.w.e.


doi:10.1140/epjc/s10052-019-7454-4

VNS location in the basement floor

NUCLEUS in the VNS room

Time scale of the NUCLEUS project

2019	\longrightarrow	Sep 2022	
Design & realization			

Oct 2022 \longrightarrow Jan 2024

Blank assembly & commissioning

- full experiment assembly at UGL
- commissioning of the detectors
- physics and background model

Spring 2024

Chooz on-site installation

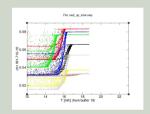
- relocation from UGL to Chooz
- installation at VNS
- quick commissioning

Phase 1: measure $CE\nu NS$ at Chooz nuclear reactor

Physics run after relocation to Chooz (Mid 2024 – 2027(?))

NUCLEUS EdF - CEA convention

Signed for 6 years (2021 – 2027), with possibility of extension for the lifetime of the experiment


Phase 2: high precision $CE\nu NS$ measurement

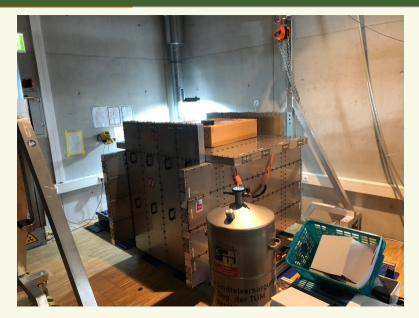
Upgrade to NUCLEUS-1kg (2025 - 2030(?))

Array production and testing

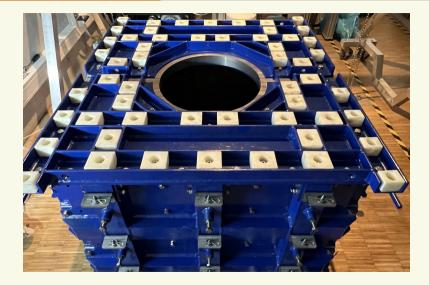
- Sapphire production for NUCLEUS-10g completed, tested for transitions
- CaWO₄ arrays: produced, under testing for TC

Performance runs - Run 29

• CaWO₄ cube, 6 eV energy resolution with running Pulse Tube


Operating cube(s) with inner veto, LED integration

- tests with one cube, two cubes
- 2022 "Christmas run": 2x CaWO₄ cubes + Vibration decoupling + 55Fe + LED fiber



arxiv.org/2211.03631 (Nov 2022)

NUCLEUS Muon Veto assembly at UGL

NUCLEUS Passive Shielding assembly at UGL (Mechanical structure & Lead)

Chooz experimental site status

Very Near Site (VNS) status

- room floor reinforcement ready
- electrical installation, water chiller: due Feb 2023
- network infrastructure: T1 2023

VNS room - 2020

VNS room - measurements April 2022

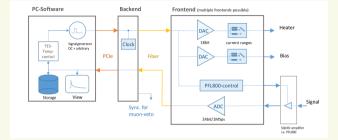
VNS room - end of 2022

The NUCLEUS experiment

RES common contributions to CRYOCLUSTER experiments

RES contributions to NUCLEUS experiment

Recent NUCLEUS physics results

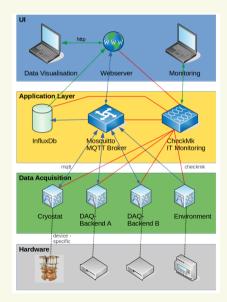

RES: VDAQ - Versatile DAQ system for CRYOCLUSTER experiments

VDAQ

- modular
- scalable
- highly customisable
- fast

VDAQ status - progress despite delivery problems

- PCB design (4 flavors) completed
- Mechanical mock-ups built for every type
- Tender for prototype and series production completed, contract signed
- Prototypes available in Feb 2023
- First production series expected mid of 2023



RES: VCCS - Versatile control and monitoring for cryogenic systems

Based on

- InfluxDB time series database
- CheckMK monitoring tool for network, hosts and processes
- Mosquitto lightweight message broker of MQTT web protocol

Status – in progress

RES: Computing and software for CRYOCLUSTER experiments

Computing

- data-taking computational aspects
- data transfer and data organization
- computing for data analysis
- software deploying

Software packages: analysis of raw data

- CAT "Cryogenic Analysis Tools", C++
- CAIT "Cryogenic Artificial Intelligence Tools A Python package for the raw data analysis with machine learning."

Software packages: high-level analysis of data - mainly CRESST

- ROMEO "Complete statistical analysis tool for CRESST-style detectors; unbinned likelihood approach", Julia
- Limitless "a likelihood band fit + limit setting program"

The NUCLEUS experiment

RES common contributions to CRYOCLUSTER experiments

RES contributions to NUCLEUS experiment

Recent NUCLEUS physics results

Management positions

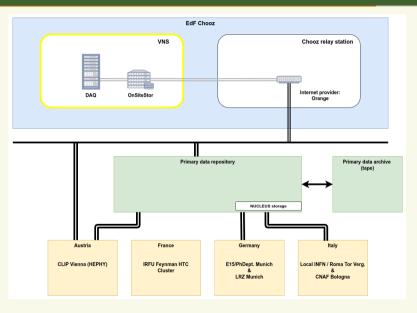
- HEPHY PI: V.M. Ghete
- M. Friedl Electronics coordinator
- V.M. Ghete Computing coordinator

Contributions

- design, produce, maintain and finance the whole DAQ system, based on VDAQ
- provide the control and monitoring software, based on VCCS
- provide and coordinate the site computing systems

Muon Veto DAQ

SiPM control module


NUCLEUS simulation

- RES was involved in NUCLEUS simulation from the first idea of NUCLEUS as experiment
- extensive studies of experiment design and optimization, background estimation, etc

FWF project: ELOISE - Reliable background simulation at sub-keV energies (H. Kluck)

- implement CEvNS in Geant4 long-term goal: validate it with NUCLEUS!
 - need validated background model at sub-keV
- validate Geant4 em processes below 250eV
 - \cdot if needed, extend/improve Geant4 down to \sim 30 eV (onset of solid state effects)
 - compare to NUCLEUS blank assembly measurements at UGL
- measure experimental reference data with electron energy-loss spectroscopy of Al₂O₃ and CaWO₄ ongoing, in cooperation with TU Wien

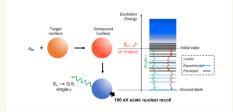
RES: NUCLEUS computing systems

The NUCLEUS experiment

RES common contributions to CRYOCLUSTER experiments

RES contributions to NUCLEUS experiment

Recent NUCLEUS physics results


In-situ calibration using a nuclear recoil peak at 100 eV scale induced by neutron capture

CRAB-NUCLEUS calibration: collaboration between CRAB and NUCLEUS Collaborations "Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture" arxiv.org/2211.03631 (Nov 2022)

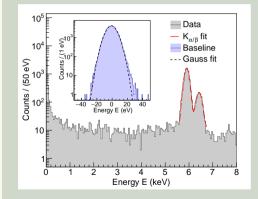
Motivation: calibration of nuclear recoil signature at 10 - 100 eV scale

- Cryogenic detectors can measure very low nuclear recoils - need calibration in this range
- Use capture of thermal neutrons in crystals, followed by single- γ de-excitation
- use a commercial ²⁵²Cf neutron source
- for CaWO₄: expect a peak at 112.5 eV
 - $\cdot\,$ single- γ de-excitation of $^{183}{\rm W}$ after capturing a neutron on $^{182}{\rm W}$
 - + $E_{\gamma}=6.2~{\rm GeV}:\gamma$ escapes the gram-scale crystal, so pure nuclear recoil signal

Principles of calibration

Tools

- Simulation tools: Geant4 package, FIFRELIN code (precise fission modelling)
- Analysis tools: CAT, DIANA


CRAB-NUCLEUS calibration - Run 29 setup (contd.)

Standard electronic recoil calibration with $^{\rm 55}{\rm Fe}$ source

- $K_{\alpha} = 5.985 \, \mathrm{keV}$ (weighted average)
- $\bullet \ K_{\beta} = 6.490 \, \mathrm{keV}$
- K_{lpha} and K_{eta} clearly separated
- simple linear extrapolation of the energy calibration towards lower pulse heights

Energy spectra for measurements with ²⁵²Cf source

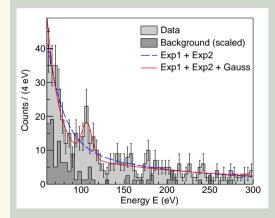
CRAB-NUCLEUS calibration - Results (contd.)

Peak finding analysis

Maximum likelihood method with Poisson statistics

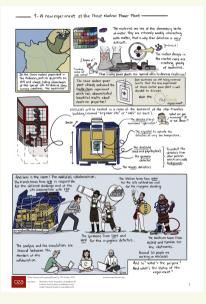
• two independent fits

$$f^{bck} = ae^{-bx} + ce^{-dx}$$
$$f^{bck+sig} = f^{bck} + \frac{a_2}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)}$$


statistical test

$$t = -2\ln{(\frac{\mathcal{L}_{\rm bck}}{\mathcal{L}_{\rm bck+sig}})}$$

Results


- Significance: 3.1 σ [non-existence of a Gaussian peak is rejected with 3.1 σ (2-sided].
- Gaussian peak: μ_{peak} = 106.7^{+1.9}_{-2.0} eV, σ_{peak} = 6.0^{+1.6}_{-1.4} eV and an integral of 37.3^{+9.7}_{-9.0} counts.

Energy spectra for background (w/o source) measurements and measurements with $^{\rm 252}Cf$ source [0, 300 eV]

Submitted to Physical Review Letters: both referees recommend the publication!

Summary

https://nucleus-experiment.org/

Thank you for your attention!