A boost for a whole life

Dedicated to the memory of my teacher Prof. Mateev
M.V. Chizhov
(Sofia University and JINR)

ON THE MUON-ELECTRON MASS DIFFERENCE

```
V.G. Kadyshevskii, M.D. Mateev,
``` and M.V. Chizhov


Joint Institute for Nuclear Research, Dubna. Translated from Teoreticheskaya i Matematicheskaya
Fizika, Vol.45, No.3, pp.358-364, December, 1980. Original article submitted January 28, 1980.

\section*{Fundamental interaction}
\[
\begin{equation*}
\mathscr{L}_{I}(x)=\frac{e^{2} l^{2}}{4}\left[\bar{\Psi}(x) \sigma_{1} \otimes \gamma^{\mu} \Psi(x)\right]\left[\bar{\Psi}(x) \sigma_{3} \otimes \gamma_{\mu} \Psi(x)\right] . \tag{3.3}
\end{equation*}
\]
\[
\begin{align*}
& {\left[\Psi_{B_{2}}^{b_{2}}\left(x_{2}\right) \bar{\Psi}_{a_{2}}^{a_{2}}\left(x_{2}\right)\right]=-\frac{1}{2} \Psi_{B_{1}} \bar{\Psi}_{A_{1}} K_{A_{1} B_{1} A_{2} B_{2}} \Psi_{B_{2}} \bar{\Psi}_{A_{2}}=-\frac{1}{2}(\Psi \bar{\Psi}, K \Psi \bar{\Psi}) .} \tag{4.3}
\end{align*}
\]

\section*{Mean-field approximation method}

Hartree

Fock

Bogolyubov

11/04/2011

5

\section*{ANOMALOUS EXPECTATION VALUES OF MULTICOMPONENT FIELDS}

\[
\operatorname{Asym}\left(\lambda_{0} \bar{\Psi} \theta Q \Psi \bar{\Psi}_{\eta} R \Psi\right)=\frac{\lambda_{0}}{4 N} \bar{K}_{n m^{a b}}(\theta Q, \eta R) \frac{1}{2}\left\{\bar{\Psi} T_{a} \Gamma^{n} \bar{\Psi}, \Psi T_{b} \Gamma^{m} \Psi\right\}+\frac{\lambda_{0}}{4 N} K_{n m^{a b}}(\theta Q, \eta R) \frac{1}{2}\left[\bar{\Psi}, T_{a} \Gamma^{n} \Psi\right] \frac{1}{2}\left[\bar{\Psi}, T_{b} \Gamma^{m} \Psi\right]
\]
\[
\begin{aligned}
& \mathscr{R}=\left(\begin{array}{rrrrr}
3 & -4 & -6 & 4 & -1 \\
-1 & 6 & 0 & 2 & 1 \\
-1 & 0 & 6 & 0 & -1 \\
1 & 2 & 0 & 6 & -1 \\
-1 & 4 & -6 & -4 & 3
\end{array}\right), \\
& \overline{\mathscr{K}}=\left(\begin{array}{rrrrr}
1 & -4 & -6 & -4 & 1 \\
-1 & 2 & 0 & -2 & 1 \\
1 & 4 & -6 & 4 & 1
\end{array}\right) . \quad \text { New Fierz identities }
\end{aligned}
\]

\section*{Diquark excitations, color superconductivity...}

Joint Institute for Nuclear Research, Dubna. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 51, No.2, pp.218-223, May, 1982. Original article submitted February 5, 1981.

\section*{Dynamical generation of composite particles}

\title{
Higgs mechanism through \(\Psi \Psi\) and \(\bar{\Psi} \bar{\Psi}\) condensates
}

\title{
BOGOLUBOV'S SPONTANEOUS SYMMETRY-BREAKING MECHANISM AND THE HIGGS PHENOMENON
}

\section*{M.V. CHIZHOV}

Joint Institute for Nuclear Research, Dubna, USSR

Received 18 June 1981

In the mean-field approximation the four-fermion (V-A)-theory is shown to have all the features of the abelian model with spontaneous symmetry breaking. In this model the coupling constants turn out to be the known functions of two parameters: the Yukawa coupling constant and the vacuum expectation value of the Higgs field.

\section*{A GRAND UNIFIED MODEL WITH BOGOLUBOV'S SYMMETRY BREAKING MECHANISM}

\author{
M.V. CHIZHOV \\ Joint Institute for Nuclear Research, Dubna, USSR
}

Received 22 December 1981
Revised manuscript received 15 March 1982

It is shown that \(\mathrm{E}_{6}\) is the minimal group in the E-chain of the Dynkin diagrams which allows the construction of a unified model of elementary particles in the framework of the Bogolubov method for dynamic symmetry breaking. The idea is based on the introduction of a fundamental self-coupled spinor field, the collective modes of which have the properties of gauge and Higgs particles. The hierarchy of fermion masses is discussed.

\section*{(and Pravetz)}

\section*{Nambu - Jona-Lasinio extended model}

\[
\mathcal{L}=\bar{\psi} \not q \psi+\frac{G_{0}}{2} \bar{\psi}\left(1+\gamma^{5}\right) \psi \bar{\psi}\left(1-\gamma^{5}\right) \psi
\]
\[
-\frac{G_{V}}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}-\frac{G_{A}}{2}\left(\bar{\psi} \gamma_{\mu} \gamma^{5} \psi\right)^{2}
\]
\[
-\frac{G_{T}}{2} \bar{\psi} \sigma_{\mu \lambda}\left(1+\gamma^{5}\right) \psi \frac{q^{\mu} q}{q^{2}} \bar{\psi} \sigma^{\nu \lambda}\left(1-\gamma^{5}\right) \psi
\]

\section*{Lorentz group representation}
\(\mathrm{S}=1 \underbrace{\left.\overline{\psi_{\mathrm{R}}} \sigma_{\mu \nu} \mid \psi_{\mathrm{L}}\right)}_{T_{\mu \nu}-\tilde{\mathrm{i}}_{\mu \nu}}\)

11/04/2011

W*

\section*{Parity transformation}

\section*{Charge conjugation}

w
\(W^{\prime}\)

W*

TABELLE II
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & GRUPPE I.
\[
R^{20}
\] & GRUPPE II. RO & GRUPPE III.
\[
R^{2} O^{3}
\] & \[
\begin{aligned}
& \text { GRUPPE IV. } \\
& \text { RH4 } \\
& \text { RO2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GRUPPE Y. } \\
& \text { RH } H^{3} \\
& R^{2} O^{5}
\end{aligned}
\] & GRUPPE VI. \(\mathrm{RH}^{2}\) \(\mathrm{RO}^{3}\) & \[
\begin{gathered}
\text { GRUPPE VI } \\
\text { RH } \\
R^{2} O^{7}
\end{gathered}
\] & GRUPPE VIII.
RO4 \\
\hline \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
L_{i}=7 .
\] & \(B e=9,4\) & \(B=11\) & \(c=12\) & \(\mathrm{N}=14\) & \(0=16\) & \(F=19\) & \\
\hline 3 & \(\mathrm{Na}=23\) & \(\mathrm{Mg}=24\) & \(A_{1}=27,3\) & \(\mathrm{Si}=28\) & \(P=31\) & S \(=32\) & \(\mathrm{Cl}=35,5\) & \\
\hline 4 & \(K=39\) & \(C C=40\) & -= 44 & Ti \(=48\) & \(V=51\) & \(\mathrm{Cr}=52\) & \(M \mathrm{n}=55\) & \[
\begin{aligned}
\mathrm{Fe}=56, \mathrm{Co} & =59, \\
\mathrm{Ni} & =59, \mathrm{Cu}
\end{aligned}=63 .
\] \\
\hline 5 & (\(\mathrm{Cu}=63\)) & \(\mathrm{Zn}=65\) & \(-=68\) & \(-=72\) & As \(=75\) & Se \(=78\) & \(\mathrm{Br}=80\) & \\
\hline 6 & \(\mathrm{Rb}=85\) & \(5 \mathrm{r}=87\) & ?Yt \(=88\) & \(\mathrm{Zr}=90\) & \(\mathrm{Nb}=94\) & \(M_{0}=96\) & \(-=100\) & \[
\begin{aligned}
& R u=104, R h=104 \\
& P d=106, A q=108 .
\end{aligned}
\] \\
\hline 7 & (Ag = 108) & \[
C d=112
\] & \[
I n=113
\] & Sn \(=118\) & \(5 b=122\) & \(T e=125\) & \(J=127\) & \\
\hline 8 & \(C 5=133\) & \(B a=137\) & \(? \mathrm{Di}=138\) & ? \(C\) Ce \(=140\) & & & & \\
\hline 9 & \[
(-)
\] & - & \[
-
\] & & \[
-
\] & & - & \\
\hline 10 & - & - & ? Er \(=178\) & ? L C \(=180\) & \(\mathrm{Ta}=182\) & \(W=184\) & - & \[
\begin{aligned}
& O S=195, \mathrm{tr}=197, \\
& P \mathrm{t}=198, \mathrm{Au}=199 .
\end{aligned}
\] \\
\hline 11 & \((A u=199)\) & \(\mathrm{Hg}=200\) & \(\mathrm{T1}=204\) & Pb \(=207\) & \(8 i=208\) & - & - & \\
\hline 12 & - & & & Th = 231 & - & \(U=240\) & - & - - - \\
\hline
\end{tabular}

Figure 2.5 Dmitri Mendeleev's 1872 periodic table. The spaces marked with blank lines represent elements that Mendeleev deduced existed but were unknown at the time, so he left places for them in the table. The symbols at the top of the columns (e.g., \(\mathrm{R}^{2} \mathrm{O}\) and \(\mathrm{RH}^{4}\)) are molecular formulas written in the style of the 19th century.

\section*{Lorentz group representations}

\title{
Vector Meson Couplings to Vector and Tensor Currents in Extended NJL Quark Model \({ }^{\boldsymbol{f}}\)
}

\section*{M. Chizhov}

Institut de Physique Nucléaire de Lyon and Université Claude Bernard Lyon-1, 69622 Villeurbanne, France Center for Space Research and Technologies, Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria Received May 14, 2004

A simple explanation of the dynamic properties of vector mesons is given in the framework of extended Nambu-Jona-Lasinio quark model. New mass relations among the hadron vector resonances are derived. The results of this approach are in good accordance with the QCD sum rules, the lattice calculations, and the experimental data. © 2004 MAIK "Nauka/Interperiodica".
PACS numbers: \(12.39 . \mathrm{Ki} ; 12.39 . \mathrm{Fe} ; 14.40 . \mathrm{Cs}\)

\section*{Spin-1 states}

\section*{Chiral representation}
\[
T_{\mu \nu}+\tilde{T}_{\mu \nu} \stackrel{V_{\mu}+A_{\mu}}{\substack{V_{\mu}-A_{\mu}}} T_{\mu \nu}-\tilde{T}_{\mu \nu}
\]

\section*{Polar-Axial representation}
\[
\begin{aligned}
V_{\mu}\left(1^{--}\right) & \stackrel{\text { mixing }}{\longleftrightarrow}\left(1^{--}\right) V_{\mu}^{*} \sim \partial^{\nu} T_{\mu \nu} \\
A_{\mu}\left(1^{++}\right) & \left(1^{+-}\right) A_{\mu}^{*} \sim \partial^{\nu} \tilde{T}_{\mu \nu}
\end{aligned}
\]

\section*{Spin-1 meson table}
\begin{tabular}{c|ccc}
JPC I & 1 & 0 & \(1 / 2\) \\
\hline \(1^{--}\) & \(\rho, \rho^{\prime}\) & \(\omega, \omega^{\prime \prime} ; \phi, \phi^{\prime}\) & \(K^{*}, K^{\prime *}\) \\
\(1^{+-}\) & \(a_{1}\) & \(f_{1}\) & \(K_{a 1}\) \\
\(b_{1}\) & \(h_{1}\) & \(K_{b 1}\)
\end{tabular}

\section*{Spin-1 hadron resonances}

\section*{M.Chizhov, JETP Lett. 80 (2004) 73}

\[
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
\]

Mass \(m=775.5 \pm 0.4 \mathrm{MeV}\)
Full width \(\Gamma=149.4 \pm 1.0 \mathrm{MeV}\)
\(\boldsymbol{\rho (1 4 5 0)}{ }^{[5]} \quad{ }^{[s]}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)\)
Mass \(m=1459 \pm 11 \mathrm{MeV}{ }^{[n]} \quad(S=3.4)\)
Full width \(\Gamma=171 \pm 50 \mathrm{MeV}{ }^{[n]} \quad(\mathrm{S}=4.9)\)
\(a_{\mathbf{1}}(1260)^{[m]} \quad \quad{ }^{[\mathrm{G}}\left(J^{P C}\right)=1^{-}(1++)\)
Mass \(m=1230 \pm 40 \mathrm{MeV}[n]\)
\[
\bar{q} \gamma^{\mu} \gamma^{5} q \cdot A_{\mu}
\]

Full width \(\Gamma=250\) to 600 MeV
\[
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
\]

Mass \(m=1229.5 \pm 3.2 \mathrm{MeV} \quad(S=1.6)\)
Full width \(\Gamma=142 \pm 9 \mathrm{MeV} \quad(\mathrm{S}=1.2)\)
\[
\bar{q} \sigma^{\mu v} \gamma^{5} q \cdot\left(\partial_{\mu} A_{v}^{*}-\partial_{v} A_{\mu}^{*}\right)
\]

\section*{New mass relation}
\[
m_{a_{1}}^{2}+m_{b_{1}}^{2}=m_{\rho}^{2}+m_{\rho}^{2}
\]

Weinberg's mass relation \(\quad m_{a_{1}}^{2}=2 m_{\rho}^{2}\)

\[
m_{\rho^{\prime}}^{2}=m_{\rho}^{2}+m_{b_{1}}^{2}=(1453.8 \pm 3.0 \mathrm{MeV})^{2}
\]
\[
m_{\rho^{\prime}}^{\mathrm{PDG}}=(1465 \pm 25) \mathrm{MeV}
\]
\[
\begin{aligned}
& I^{G}=1^{+}: \frac{2\left(\boldsymbol{m}_{\rho^{\prime}}-\boldsymbol{m}_{\rho}\right)^{2}+3 \boldsymbol{m}_{\rho^{\prime}} \boldsymbol{m}_{\rho}}{3\left(\boldsymbol{m}_{b}\right)^{2}}=0.96 \pm 0.03 \\
& I^{G}=0^{-}: \frac{2\left(\boldsymbol{m}_{\omega^{\prime}}-\boldsymbol{m}_{\omega}\right)^{2}+3 \boldsymbol{m}_{\omega^{\prime}} \boldsymbol{m}_{\omega}}{3\left(\boldsymbol{m}_{h}\right)^{2}}=1.01 \pm 0.07 \\
& I^{G}=0^{-}: \mathrm{h}_{1}(\mathrm{~S} \bar{S}) ? \boldsymbol{m}_{h}\left(\boldsymbol{m}_{\phi^{\prime}}, \boldsymbol{m}_{\phi}\right)=(1415 \pm 13) \mathrm{MeV}
\end{aligned}
\]

\section*{Meson Summary Table}

\section*{"The making of the Standard model"}

\section*{S. Weinberg, Eur. Phys. J. C 34 (2004) 5}
"I supposed that the vector gauge boson of this theory (of the strong interactions) would be the \(\rho\)-meson, while the axial-vector gauge boson would be the \(a_{1}\) meson." "... but I was applying it to the wrong kind of interactions. The right place to apply these ideas was not the strong interactions, but to the weak and electromagnetic interactions."
Nature provides us with one more type of axial-vector bosons \(\boldsymbol{b}_{1}\) and \(\boldsymbol{h}_{\mathbf{1}}\).
What is their role for the high energy physics?
11/04/2011

\section*{Technicolor}

\section*{techni-pion, techni- \(\rho\), techni- \(\omega\)...}
\begin{tabular}{|l|l}
\hline \(\boldsymbol{\pi}^{\mathbf{0}}\) & \(I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)\) \\
\hline
\end{tabular}

\section*{What's esle?}

Mass \(m=134.9766 \pm 0.0006 \mathrm{MeV} \quad(S=1.1)\)
\(m_{\pi^{ \pm}}-m_{\pi^{0}}=4.5936 \pm 0.0005 \mathrm{MeV}\)
Mean life \(\tau=(8.4 \pm 0.6) \times 10^{-17} \mathrm{~s} \quad(S=3.0)\)
\(c \tau=25.1 \mathrm{~nm}\)
\[
\bar{q} \gamma^{\mu} q \cdot V_{\mu}
\]

\section*{Motivation for SM extension}

The main theoretical motivation for beyond the Standard Model physics around TeV energies (LHC) is provided by the Hierarchy Problem, an inexplicable the UltraViolet stability of the weak interaction scale \(\left(M_{w, Z}=10^{2} \mathrm{GeV}\right)\) versus the Planck mass (\(\mathrm{M}_{\mathrm{P}}=10^{19} \mathrm{GeV}\)),
\[
\text { WHY IS } M_{w, Z}^{2} / M_{p}^{2}=10^{-34} ?
\]

Introduction of new spin-1 bosons with the internal quantum numbers identical to the Standard Model Higgs doublet can help to solve by the Hierarchy Problem.
M. Chizhov and G. Dvali "Origin and

Phenomenology of Weak-Doublet Spin-1
Bosons", arXiv:0908.0924
\[
\binom{H^{+}}{H^{0}} \leftrightarrow\binom{W_{\mu}^{*^{+}}}{Z_{\mu}^{*}}
\]

\section*{We predict an existence of new excited chiral particles \(\mathrm{W}^{*}\) and \(\mathrm{Z}^{*}\) with new unique properties.}

\section*{Z', graviton and Z* angular distributions}

Table 3.10. Angular distributions for the decay products of spin-1 and spin-2 resonances, considering only even terms in \(\cos \theta^{*}\).
\begin{tabular}{lll}
\hline Channel & \multicolumn{1}{c}{\(d\)-functions } & Normalised density for \(\cos \theta^{*}\) \\
\hline\(q \bar{q} \rightarrow G^{*} \rightarrow f \bar{f}\) & \(\left|d_{1,1}^{2}\right|^{2}+\left|d_{1,-1}^{2}\right|^{2}\) & \(P_{q}=\frac{5}{8}\left(1-3 \cos ^{2} \theta^{*}+4 \cos ^{4} \theta^{*}\right)\) \\
\(g g \rightarrow G^{*} \rightarrow f \bar{f}\) & \(\left|d_{2,1}^{2}\right|^{2}+\left|d_{2,-1}^{2}\right|^{2}\) & \(P_{g}=\frac{5}{8}\left(1-\cos ^{4} \theta^{*}\right)\) \\
\(q \bar{q} \rightarrow \gamma^{*} / Z^{0} / Z^{\prime} \rightarrow f \bar{f}\) & \(\left|d_{1,1}^{1}\right|^{2}+\left|d_{1,-1}^{1}\right|^{2}\) & \(P_{1}=\frac{3}{8}\left(1+\cos ^{2} \theta^{*}\right)\) \\
\hline\(d \bar{d} \rightarrow Z^{*} \rightarrow f \bar{f}\) & \(\left|d_{0,0}^{1}\right|^{2}\) & \(P_{1}^{*}=\frac{3}{2} \cos ^{2} \theta *\)
\end{tabular}
3.3.6. Discriminating between different spin hypotheses

The fractions of generated events arising from these processes are denoted by \(\epsilon_{q}, \epsilon_{g}\), and \(\epsilon_{1}\), respectively, with \(\epsilon_{q}+\epsilon_{g}+\epsilon_{1}=1\). Then the form of the probability density \(P\left(\cos \theta^{*}\right)\) is
\[
\begin{equation*}
P\left(\cos \theta^{*}\right)=\epsilon_{q} P_{q}+\epsilon_{g} P_{g}+\epsilon_{1} P_{1} \cdot+\varepsilon_{1}^{*} P_{1}^{*} \tag{3.24}
\end{equation*}
\]

\section*{ATLAS is already looking for them!}

\section*{Theoretical comparision between \(\mathrm{z}^{\prime}\) and \(\mathrm{Z}^{*}\)}
M. Chizhov, Disentangling between \(Z^{\prime}\) and \(Z^{*}\) with first LHC data, arXiv:0807.5087
invariant mass

pseudorapidity difference

transverse momentum

Event display of Run 167607, Event 9435121.
This shows the highest-mass dijet event collected during 2010, where the two leading jets in a forward-backward dijet system produce an invariant mass of 4.0 TeV . The two leading jets have \(\left(p_{T}, y\right)\) of (\(510 \mathrm{GeV},-1.9\)) and (\(510 \mathrm{GeV}, 2.2\)), respectively. The missing \(\mathrm{E}_{\mathrm{T}}\) in the event is 31 GeV .

\section*{4 TeV ~ 50 zm (zeptometer \(=10^{-21} \mathrm{~m}\))!}

\begin{tabular}{c|cc||cc|}
\hline \hline & \multicolumn{3}{|c}{ Mass limit [GeV] } \\
& \multicolumn{2}{|c|}{\(W^{\prime}\)} & \multicolumn{1}{c}{\(W^{*}\)} \\
decay & Exp. & Obs. & Exp. & Obs. \\
\hline\(e \nu\) & 1370 & 1370 & 1260 & 1260 \\
\(\mu \nu\) & 1210 & 1290 & 1020 & 1120 \\
both & 1450 & 1490 & 1320 & 1350 \\
\hline \hline
\end{tabular}

The ATLAS Collaboration "Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at \(\sqrt{ } \mathrm{s}=\) 7 TeV with the ATLAS detector", arXiv:1103.1391, submitted to Physics Letter B

\begin{tabular}{l|cc|cc}
\hline \hline & \multicolumn{2}{|c|}{ Observed limit } \\
mass \([\mathrm{TeV}]\) & \(\sigma B[\mathrm{pb}]\)
\end{tabular} \begin{tabular}{c}
Expected limit \\
mass \([\mathrm{TeV}]\) \\
\(\sigma B[\mathrm{pb}]\)
\end{tabular}
\begin{tabular}{l|cccccc}
\hline \hline Model & \(Z_{\psi}^{\prime}\) & \(Z_{\mathrm{N}}^{\prime}\) & \(Z_{\eta}^{\prime}\) & \(Z_{I}^{\prime}\) & \(Z_{\mathrm{S}}^{\prime}\) & \(Z_{\chi}^{\prime}\) \\
\hline Mass limit \([\mathrm{TeV}]\) & 0.738 & 0.763 & 0.771 & 0.842 & 0.871 & 0.900 \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Observed limit
mass [Tev] \(O B[\mathrm{pb}]\)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Expected limit } \\
\operatorname{mass}[\mathrm{TeV}] \sigma B[\mathrm{pb}]
\end{gathered}
\]} \\
\hline \(\overline{Z^{*} \rightarrow e^{+} e^{-}}\) & 1.058 & 0.149 & 1.062 & 0.143 \\
\hline \(Z^{*} \rightarrow \mu^{+} \mu^{-}\) & 0.946 & 0.265 & 0.995 & 0.199 \\
\hline \(Z^{*} \rightarrow \ell^{+} \ell^{-}\) & 1.152 & 0.089 & 1.185 & 0.080 \\
\hline
\end{tabular}

The ATLAS Collaboration "Search for high mass dilepton resonances in \(p p\) collisions at Vs=7 TeV with the ATLAS experiment", arXiv:1103.6218, submitted to Physics Letter B

\section*{We were lucky - shortly after colliding beams} were announced, at 14:22 an interesting event appeared on our screens

© ATLAS2009-11-23, 14:22 CET

Candidate
Collision Event

Collision Event at 7 TeV with 2 Pile Up Vertices

\section*{}

\section*{Quantum Field Theory and a New Universal High-Energy Scale.} II. - Gauge Vector Fields.
M. V. Chezhov, A. D. Donkov (*), R. M. Ibadov (**)
V. G. Kadishevsky and M. D. Mateev (*)

Joint Institute for Nuclear Researchb Laboratory of Theoretical Physics, Dubna, U.S.S.R.
IL NUOVO CIMENTO Vol. \(87 \mathrm{~A}, \mathrm{~N} .4\)
21 Giugno 1985
Quantum Field Theory and a New Universal High-Energy Scale.
III. - Dirac Fields.
M. V. Chizhov, A. D. Donkov, R. M. Ibadov (*)
V. G. Kadyshevsky and M. D. Mateev (**)
Joint Institute for Nuelear Research, Dubna, U.S.S.R.

\section*{Excited particles (compositeness)}
\[
\mathcal{L}_{\psi *}=\frac{g}{\Lambda} \bar{\psi}^{*} \sigma^{\mu \nu} \psi \cdot\left(\partial_{\mu} Z_{v}-\partial_{v} Z_{\mu}\right)
\]

Searches for excited fermions \(\psi^{*}\) have been performed at LEP, HERA and the Tevatron, and are also planned for the CMS and ATLAS experiments at the LHC.
\[
\mathcal{L}_{Z^{*}}=\frac{\psi^{*} \text { why not } Z^{*} \boldsymbol{?}}{\Lambda} \bar{\psi}^{\mu \nu} \psi \cdot\left(\partial_{\mu} Z_{v}^{*}-\partial_{v} Z_{\mu}^{*}\right)
\]
M. C., V. A. Bednyakov, and J. A. Budagov, Proposal for chiral bosons search at LHC via their unique new signature, Phys. Atom. Nucl. 71 (2008) 2096; arXiv:0801.4235
\(Z^{*}\) has different interactions than \(Z^{\prime}\) !
\[
\mathcal{L}_{Z^{\prime}}=\bar{\psi} \gamma^{\mu}\left(g_{V}+g_{A} \gamma^{5}\right) \psi \cdot Z_{\mu}^{\prime}
\]

\section*{Jacobian factor for \(\cos \theta \rightarrow p_{T}\)}

\[
p_{L}=\frac{M}{2} \cos \theta
\]
\[
\cos \theta=\sqrt{1-\frac{4 p_{T}^{2}}{M^{2}}}
\]

\[
\frac{\mathrm{d} \cos \theta}{\mathrm{~d} p_{T}^{2}}=-\frac{2}{M^{2} \cos \theta}
\]
"The divergence at \(\theta=\pi / 2\) which is the upper endpoint \(p_{T} \approx M / 2\) of the \(p_{T}\) distribution stem from the Jacobian factor and is known as a Jacobian peak; it is characteristic of all two-body decays ..."
M 1 O 1 V. Barger "Collider physics"

\section*{Hadron colliders}

\section*{or search for heavy bosons beyond \(\mathbf{W}^{ \pm}\)and \(\mathbf{Z}\)}

A hadron collider is the discovery machine. The production mechanism for new bosons at a hadron collider is \(q \bar{q}\) annihilation. A presence of partons with a broad range of different momenta allows to flush the whole energetically accessible region, roughly, up to
\[
M=\sqrt{x_{1} x_{2}} E_{\mathrm{CM}} \approx \bar{x} E_{\mathrm{CM}} \leq \frac{E_{\mathrm{CM}}}{6}\left(\bar{x} \approx \frac{1}{2} \times \frac{1}{3}\right) \quad \text { (rule of thumb) }
\]

\section*{\(\mathrm{p} \stackrel{(\mathrm{p}}{ }\) colliders (Tevatron: 6.3 km)}
\(E_{p}=980 \mathrm{GeV}, E_{\bar{p}}=980 \mathrm{GeV} ; E_{\text {СМ }}=1960 \mathrm{GeV}\)
\(\rightarrow 1960 \mathrm{GeV} / 6 \approx 330 \mathrm{GeV}\)
(LHC: 27 km)
\(E_{p}=7000(3500) \mathrm{GeV}, E_{p}=7000(3500) \mathrm{GeV} ; E_{\mathrm{CM}}=14000(7000) \mathrm{GeV}\)
\(\rightarrow 14000(7000) \mathrm{GeV} / 6 \approx 2330(1165) \mathrm{GeV}\)

proton - (anti)proton cross sections
```

