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For decades we have witnessed the impressive success of the Standard Model
(SM) in explaining properties and regularities observed in experiments with
elementary particles. The mathematical basis of the SM is the local La-
grangian QFT. The very concept of an elementary particle assumes that it
does not have a composite structure. In agreement with the contemporary
experimental data any fundamental particle of the SM does not manifest a
structure like this, up to distances of the order of 107'® — 107! e¢m. The
adequate mathematical images of point like particles are the local quantized
fields - boson and fermion. Particles are the quanta of the corresponding
fields. In the framework of the SM these are leptons, quarks, vector bosons
and the Higgs scalar, all characterized by certain values of mass, spin, electric
charge, colour, isotopic spin, hypercharge, etc.

Intuitively it is clear that an elementary particle should carry small enough
portions of different "charges” and "spins”. In the theory this is guaranteed
by assigning the local fields to the lowest representations of the corresponding
compact groups.

As for the mass of the particle m, this quantity is the Casimir operator of
the noncompact Poincaré group, and in the unitary representations of this
group used in QFT they may have arbitrary values in the interval 0 < m <
~0. In the SM one observes a great variety in mass values. For example,
the t-quark is more than 300000 times heavier than the electron. In this
sitnation the question naturally arises: up to what values of mass one
may apply the concept of a local quantum field? !



The free Klein-Gordon equation for the one component real scalar field
w(x) has always the form

(04 m?)p(x) = 0. (1)
Hence, after standard Fourier transform
1 .
Al — ’—1}]“1‘“ A 4, po_ 0.0 . ¢
[]""(T) (.Zﬂ_)gffg /E ‘f"’(p) d p (p,uI px p I) (2)
we find the equation of motion in the Minkowski momentum 4-space:
(m® —p*)p(p) =0, p*=p;—p° (3)

From a geometric point of view m is the radius of the "mass shell” hyper-
boloid
2 2 2
m” = p; — p’, (4)
where the field p(p) is defined and in the Minkowski momentum space
one may embed hyperboloids of type (4) of an arbitrary radius.



Formally, the contemporary QFT remains a logically perfect scheme and
its mathematical structure does not change at all up to arbitrarily large values
of masses of quanta. Maybe this pathological property is the Achilles
heel of this theory?! The key idea of the approach developed in [1-10]
is the following radical hypothesis: the mass spectrum of elementary
particles, i.e., the objects described by local quantum fields, has to
be cut off at a certain value M:

m < M. (5)

This statement has to be accepted as a new fundamental principle of Nature
which similarly to the relativistic and quantum postulates should underlie
QFT. The new universal physical constant M is not only the maximal value
of particle mass but also plays the role of a new high-energy scale. We shall
call this parameter the fundamental mass. It is worth emphasizing that
here, due to (5), the Compton wave length of a particle A\ = h/mc cannot
be smaller than the "fundamental length” I = h/Mec. According to |11], the
parameter Ao characterizes the dimensions of the region of space in which a
relativistic particle of mass m can be localized. Therefore. the fundamental
length / introduces into the theorv a universal bound on the accuracy of the
localization in space of elementary particles. o



Let us go back to the free one-component real scalar field we considered above
(see(1)-(4)). We suppose that its mass m satisfies the condition (5). How
should one moditfy the equations of motion in order that the existence of the
bound (5) should become as evident as it is the limitation v < ¢ in the special
theory of relativity? In the latter case, evervthing is explained in a simple
way: the relativization of the 3-dimensional velocity space is equivalent to a
transition in this space from Euclidean to Lobachevsky geometry realized on
the upper sheet of the 4-dimensional hyperboloid (4). Let us act in a similar
way and substitute the 4-dimensional Minkowski momentum space, which is
used in the standard QFT, to (anti)de Sitter momentum space realized on
the 5-hyperboloid:

pa—p° +ps =M. (6)

We suppose that in the p-representation our scalar field is defined just on
the surface (6), i.e., it is a function of five variables (py. p,p5), which are
connected by relation (6):

5(py — p° + ps — M?*)p(po, p, ps). (7)



Here the energy p; and the 3-momentum p preserve their usual meaning
and the mass shell relation (4) is satisfied as well. Therefore, for the field
considered ©(pg. p, ps) the condition (5) is always fulfilled.

Clearly, in eq. (7) the specification of a single function @ (pg, p, ps) of five
variables (p,, ps) is equivalent to the definition of two independent functions
©1(p) and s(p) of the 4momentum p,,:

¢(Po, P,ps) = (P, ps) = ( ;(’ép_f“’gz) ) - ( Zig ) v _pg{. )
3

The appearance of the new discrete degree of freedom ps/|ps| and the associ-
ated doubling of the number of field variables is an important feature of the
new approach. It must be taken into account in the search for the equation of
motion for the free field in the de Sitter momentum space. Due to the mass
shell relation (4), the Klein - Gordon equation (3) should also be satisfied by

the field ¢(po, p, ps) :

(m* — py + p°)¢(po, P, ps) = 0. (9)



From our point of view this relation is unsatisfactory for two reasons:

1. It does not reflect the bounded mass condition (5).

2. It cannot be used to determine the dependence of the field on the new
quantum number ps/|ps| in order to distinguish between the components
p1(p) and pa(p).

Here we notice that because of (6) eq.(9) can be written as:

1172

(ps + M cosp)(ps — M cos pt)(p,ps) =0, cosp = \/1 - IME '

(10)

Now following the Dirac trick we postulate the equation of motion under
question in the form:

2M (ps — M cos p)p(p, ps) = 0. (11)

Clearly, eq. (11) has none of the enumerated defects of the standard Klein-
Gordon equation (9). However, equation (9) is still satisfied by the field



From egs. (11) and (8) it follows that

2M (|ps| — M cos ), (p) =0,
(12)
2M (|ps| + M cos p)pa(p) = 0,
and we obtain:
p1(p) = 6(p* — m?)@1(p)
(13)

pa(p) =0

Therefore, the free field ¢(p, ps) defined in the (anti) de Sitter momentum
space (6) describes the same free scalar particles of mass m as the field p(p)
in the Minkowski p-space, with the only difference that now we necessarily
have m < M. The two-component structure (8) of the new field does not
manifest itself on the mass shell, owing to (13). However, it will play an
important role when the fields interact, i.e., off the mass shell.

Now we face the problem of constructing the action corresponding to eq.
(11) and transforming it to the configuration representation.

In the following, we shall use the Euclidean formulation of the theory
which appears as an analytical continnation to purely imaginary energies:

Po — 1P4. (1104)



In this case, instead of the (anti) de Sitter p-space (6), we shall work with

de Sitter p-space
—pe 4+pr=M*, n=12234. (15)

Obviously.

ps = £1/M2F 2. (16)

If one uses eq. (15), the Euclidean Klein-Gordon operator m? 4+ p? may be
written, similarly to (10), in the following factorized form:

m? + p? = (ps + M cos p1)(ps — M cos ). (17)
Clearly, the nonnegative functional

SD(:lf) = mM x

ps| + M cos p)a(p)] .

(18)

J f—’]' 1 (p)2M (|ps| — M cos )1 (p) + w3 (p)2M (

5

Ps

p12(p) = ¢(p, =|ps), (19)

plays the role of the action integral for the free field ¢ (p, ps). The action may
be written also as a 5 - integral:

11



[ e(ps)d(prp™ — M?)d°p [ (p, p5)2M (ps — M cos p)o(p, ps)] (20)
L=1,2.3.4,5,
where b
E[:pﬁ) — —5 {21]
|P5|

The Fourier transform and the configuration representation have a special
role in this approach. First, we note that in the basic equation (15), which
defines the de Sitter p-space, all the components of the 5-momentum enter
on equal footing. Therefore, the expression §(prp”™ — M?)e(p, ps), which now
replaces (7), may be Fourier transformed in the following way:

2M .
— | e P S(pLp” — M) (p,ps)d® p = p(z,25), K,L=1,2,3,4,5.
(2m)3/2
(22)

This function obviously satisfies the following differential equation in the
H-dimensional configuration space:

52
( — O+ Mrg) o(x,z5) = 0. (23)

3.2
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Integration over ps in (22) gives:

n - 5
pla,25) = s [ € 08 [0 (1) + W ()

(24)
" (z,25) = p(x, —25),
from which we get:
: 399{1’71 ) 1 ipnz” —i|ps|z” i|ps |z’
_{11 aI_ > — (2‘?{)3;,-2 /\E Pn d4p |:E’. |P5| (]'91 (p) — e |P5| [‘F:"—-(p)il : (25)

The four dimensional integrals (24) and (25) transform the fields ¢, (p)

and ¢5(p) to the configuration representation. The inverse transforms have
the form:

&
) ! — —i —Epnxn 4 ¢ _ aﬂilpﬁlr L 1|p5|$53(:?{:ﬂ?$5}
P1(p) = sy €7 e [‘*’(I’ T5) g — € |

(26)

3
0O _ i —ipnz™ g4 | . de—!PsI=”  _i|ps|a® Op(z.s)
‘:L'”E(p) - g_."u’{;:r_.ﬂ}&fﬂ IE d { (I ID) drrs € drs '
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We note that the independent field variables

M oz 1 P1(D) + ¢2(p)
= O ipnx - .
o(2,0) = pln) = Gy [ P o)
" ' 0p(z,0) 1
! ¥ I1 ] L
M Fagg; = x(z) = (27)3/2 f et d'p [1(p) — w2 (p)) (28)

can be treated as initial Cauchy data on the surface x5 = 0 for the hyperbolic-
type equation (23).
Now substituting eq.(26) into the action (18) we obtain
2]
(29)

It is easily verified that due to eq. (23) the action (29) is independent of x5:

. 2 ,
So(M) =13 [d*z [ M + m?|o(z, z5) > + ’-z'%’:"’) — M cos jup(z, )

= | Lo(x,x5)d* r.

0So(M)
or 5

= 0. (30),



Therefore, the variable x5 can be arbitrarily fixed and Sy(M) can be viewed
as a functional of the corresponding initial Cauchy data for the equation (23).
For example, for a5 = 0 we have:

=1 [d' [(d*’;) + 2 ()2 + M2 (x(2) = cos pip(a))? | =

= fLg(::f;:ﬂt--j[)a’.‘il T,
(31)
Thus, we have shown that in the developed approach the property of locality
of the theory does not disappear, moreover it becomes even deeper, as it is
extended to dependence on the extra fifth dimension 5.

It is clear that the dependence of the action (31) on the two functional
arguments ¢(x) and \(x) is a direct consequence of the fact that in momen-
P1(p)
P2(p)
signs of ps. However, the Lagrangian Lg(xz, M) does not contain a kinetic
term corresponding to the field \(x). Therefore, this variable is just auxil-
iary. In advance let us point out that the special role of the 5-dimensional
configuration space in the new formalism is determined by the fact that the
cauge symmetry transformations are now localized in it.

tum space the field has a doublet structure ( ) due to two possible



Let us discuss the question about the conditions for the transition of the
new scheme into the standard Euclidean QFT (the so called " correspondence
principle”). The Euclidean momentum 4-space is the "flat limit” of the de
Sitter p-space (15) and may be associated with the approximation

|pn| < M
ps = M (32)

In configuration space we have, respectively.

P, a5) = e”MT5 ()

() p(z) (33)

In the next approximation
Ho(r)
Taking into account (10), (31) and (34) one may conclude that in the "flat

limit” (formally when M — oo) the Lagrangian Lo(x, M) from (31) coincides
with its Euclidean counterpart.

plr) = () = (34



Let us briefly consider the new version of the free Maxwell field theory based
on the de Sitter p-space (15). The electromagnetic potential, similarly to the

S-momentum, now becomes a 5-vector

Ap(p,ps) = {Ai(p.ps), As(p,ps)} = { A} (=p.ps), —AL(—p, ps)}
[ =1,2.3.4. (35)

Its 5-dimensional Fourier transform looks like

Ap(w,a5) = 522 [ emipne Y S(prp™ — M2)AL(p. ps)d® p.

(2 3;’2
(36)
K.L.N=1.23.45.
It is evident that (36) satisfies equation (23):
52
(— — O+ \[2) Ap(x,z5) = 0. (37)
ONE:
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The action is given by the integrals (compare with (20) and (29))

So(M) = 27 M x

x [ (ps)d(prp™ — M?)d®p2M (ps — M) |An(p. ps) — Letelido) 2
= [d*aLo(x.x5) = 5 [ d*wFjep (v, o5) PR (2, 25)+ (38)
+1 [d' ) *ﬂfrfjﬂs(m 25)) _ i N eiMes A (1 _3,35))2
n=1234 K, L=1.2345.
where the "field strength 5-tensor”:
FRL () — DM Ay (v, 25)) B @(eiM:UE'AL(i‘-::BE,))- (30)

dx L ox K

is introduced. This quantity is obviously expressed in terms of the commu-
tator of the 5-dimensional covariant derivatives



1,
-~ Oxl
where ¢ is the electric charge. It is easy to verify that the integral (38) is

invariant under gauge transformations of the 5-potential Ay (x, x5):

A(eMzs \(1. x5))

Dy, —igeM®s A, (x, Ts). (40)

eMTs A (v, 05) — e M AL (2, 05) — (41)

Oxrl
with the condition
o2
(51‘2 - HIQ) A, a5) = 0, Az, 25) = Ma, —x5). (42)
. 5

Let us emphasize that the solution of equation (42) is defined by the
initial data
Az.0) = ANx) = A(x)

i OA(z,0) __ N -
A7 3(; ) = p(x) = ,u.T(;L)

(43)

The action (38), due to (37), similarly to its scalar analogue (29), does
not depend on the coordinate x5. For that reason it may be considered as a
functional of the Cauchy data for equation (37):

i OAL(z,0)

AL(:L‘-, 0) — JLIL('I')? \Vi @-175

= X (2). (44)



According to (41),(43) and (44) the gauge transformations of these func-
tions are the following:

y y Oz
Ay(z) = Ay(z) — 2@

ozt
As(x) — As(x) — H[()\(L) — pu(x))
Xi(r) = Xy(x) — 22 (45)
Xs(x) = Xs(2) +iM(Ax) — p(x)) — 370 ()
[=1,2,34.

Let us emphasize that in the gauge
As(x) =0 (46)

the transformations (45) shrink up to a standard gauge group parameterized
by the function A(x).

If one considers the charged scalar particles in our formalism. the corre-
sponding action integral takes the form(cf(3.1))

STO(JI) — /d4;L? [ dQ(L)

.,
where p(z) and \(x) are complex functions.

2
+m? |p(@)]* + M? [\ (2) — cos pp(x)|*| ,  (47)




[t is easy to realize that the Abelian gauge group (45) has the following
representation in the charged scalar field basis:

O — eiq)\(ﬂf')@(l?)
\(x) = PO [i(pu(x) — Maz))p(z) + x(2)]

(q is the electric charge). The technique developed allows one to formulate
in our terms a unique prescription for construction of the action integral
for the Euclidean scalar electrodynamics consistent with the requirements
of locality, gange invariance. and the de Sitter structure of the momentum
space:

(43)

L. In the action integral (47) for the complex scalar field it is necessary
to replace t.hg simple derivatives (including % in\(r) = 57 %p(l 0))
by the covariant ones (see (40)).

2. Add to the obtained expression the action integral of the electromag-
netic field (38) putting x5 = 0 in it.

The total action integral remains invariant under simultaneous trans-
formations (45) and (48).
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As far as the new QFT is elaborated on the basis of the de Sitter momentum
space (15), it is natural to suppose that in the developed approach the fermion
fields 1, (p, ps) have to be de Sitter spinors, i.e., to transform under the four-
dimensional representation of the group SO(4, 1). Further on, we shall use
the following ~ - matrix basis (74 = i79):

! !

.r.'

{ﬁ L M} — LM

[(—1 0 0 0 0) (49)
0 -1 0 0 0
gPM =1 0 0 -1 0 0
0 0 0 =10
\ 0 0 0 0 1)

In the ordinary formalism the free Euclidean Dirac operator
D(p)=m+p,y"; n=1.234 (50)
appears as a result of factorization of the Euclidean K.-G.wave operator:

P2+ m* = (m+ py™)(m — pay™). (51)



Now instead of (51) we obtain the following factorization formula:
2M (ps — M cos 1) = (52)
l l
[2;“1-[ sin% + "+ (s — M )*‘5] [Qﬂ--f ::;in% — Y — (ps — M )*‘5]
and, correspondingly, instead of (50) the new expression for the Dirac oper-
ator y
D(p, M) = p,7™ + (ps — M)~® + 2M sin E (53)
It 1s easy to check that in the "flat approximation”
pn| €K M, m << M, ps >~ M

both expressions (53) and (50) coincide. The operator (53) allows us to
develop the local spinor field formalism in configuration space that can be
considered as a generalization of the Euclidean Dirac theory along our lines.
But the amusing point is that the new KG-operator 2M (ps — M cos i) has
one more decomposition into matrix factors:

2M (ps — M cos 1) = (54)
[pn’}’n + ’}"’5(17)5 + M)+ 2M cos g] [pn";fn + ";"’5(1)5 + M) —2M cos '(2—!] :



Therefore, if our approach is considered to be realistic, it may be assumed
that i Nature there exists some exotic fermion field associated with the
wave operator

Dezotic(p. M) = py" + V(ps + M )+2M cos{—; (55)

In contrast to D(p, M) = pyy"+(ps=M)y*+2M sin & the operator Degtic(p, M)
does not have a limit when M — oo, that justifies the name chosen for the
field considered. The polarization properties of the exotic fermion field differ
sharply from the standard ones. It is tempting to think that the quanta
of the exotic fermion field have a relation to the structure of the
"dark matter”.

Using the matrix basis (7",

(M + pry™) (M = pgy™) = M? —prK =0, K.L=1.2.3.4,5.

12345

YLy

°) one may represent (15) as



For spinor field ¢ (p, ps), which is defined on the de Sitter surface (15), the
matrix operators
%(U + PK7Y ) = Illgr(p, ps)

56
2M(U —pry) = L(p, ps) (56)
are projection operators. In other words,
H2 — HR: H2 — HL
HRHL — HLHR =0 (57)

IIp+11;, = 1.

So in the de Sitter momentum space the fermion field ¢'(p, ps) can be repre-
sented as a sum of two fields

(p,ps) = r(p.ps) +¥L(p, ps)
Ur(p:ps) = g (p, ps) (58)
Ur(p.ps) = v (p. ps)

which obey the following 5-dimensional Dirac equations:

(M — py®)r(p,ps) =0 (59)
(M + pry™ )i (p.ps) = 0.



Obviously, decomposition (58) is de Sitter invariant. It is easy to verify that
in the "flat approximation” |p,| < M. ps ~ M one has

1+

lIpr = 5 —. (60)

This is the reason that we can consider the fields vgr(p, ps) and ¥ (p, ps)

as ~chiral” components in our approach. The new chirality operator p[ﬁf,
similarly to its "flat counterpart”. has eigenvalues equal to =1 but depends
on the energy and momentum. It is well known that the chiral fermions are
the basic spinor field variables in the SM. The new geometrical nature of these
quantities has to manifest itself at high energies £ > M. In configuration

space the 5-dimensional Dirac equations (59) take the form

(M —igZey™ | vp(r,5) =0
M+ i5% " v (z,a5) =0 (61)
K=1.,2345
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Introducing the corresponding initial conditions at x5 = 0

vr(z,0) = Yr)(z)
vr(z,0) = ¥ (z)

one obtains the local fields which can undergo chiral gauge transformations.
The new geometric concept of chirality allows us to think that the parity
violation in weak interactions discovered more than 50 years ago was a man-
ifestation of the de Sitter nature of the momentum 4-space.

[t was demonstrated that there exists a local field formalism respecting the
gauge invariance principle and being consistent with our main hypothesis
m < M.

A nontrivial generalization of the Standard Model based on our geometric
approach, in particular, on a new concept of chirality, is now being worked
out. Unfortunately, already without Mag ...

In conclusion, I will demonstrate just one fragment of the new SM version
concerning the Higgs boson. It is clear that for description of this particle in
our framework, one needs two SUp,(2) -doublets of complex scalar fields ¢(x)

and y(z):
o=(20) 0= (22)



which are defined in the Euclidean 4-dimensional x-space.
Let us consider in this space the following Lagrangian:

me-:;s P, X) = (63)
( ) ( )+ME () — x(2)) (¢(z) = x(@))
+5 { [EREENOND ] 2p(0) - 0o (ole) ~ xt2) |
= (%00) (%) L g nio)

where . ,\?;E o

The potential U(p(x), x(z)) admits an infinite set of degenerate ground states
with minimum energy satisfying the following condition (cf. [12], p. 16):

pa(z)| = [xa(z)| = 3-

28



The standard procedure based on the fixation of the ground state leads to
the spontaneous breakdown of the SU(2);, @U(1)y - symmetry. As a result,
we obtain the following expression for the Higgs boson mass:

\/_ \/ A22
= vV2A\vi/ 1 — 65
= ! YE (65)

(see (64)). From (65) one easily finds

2 2 9v 2
mi AU
4 — >
L M?2 (1 M?2 ) 0. (66)

So our main principle (5) is not violated. In the "flat limit” M — oo relation

(65) gives us the familiar formula:

mu = V2\v. (67)
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Instead of epilogue
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Eternal memory to Rumi and Mag...




