Search for Physics Beyond the Standard Model with CMS detector

> Leandar Litov University of Sofia

Sofia, 11 April 2011

Introduction

- Physics Beyond the SM
 - ✓ Supersymmetry
 - ✓ Hidden Valley
 - ✓ Extra dimensions
- The CMS detector
- Recent results'
 - ✓ Search for SUSY
 - \checkmark Search for new gauge bosons W', Z
 - ✓ Search for ED
- Conclusions

- The SM is proved experimentally with high precision
- All fundamental particles (quarks and leptons) and gauge bosons (γ, W,Z, g) are experimentally observed
- Their properties are under investigation

But

- ✓ The Higgs boson is still missing
- ✓ Number of basic questions are not answered

- The SM should be considered as a low energy phenomenological model
- A new more general theory (model) should be developed (invented). The SM should be obtained as a low energy limit.
- Models
 - ✓ Grand Unification Theory
 - ✓ Technicolor
 - ✓ SUSY
 - ✓ Models with extra space-time dimensions
 - ✓ Little Higgs
 - ✓ Strings
- In all of them a new phenomena and particles are predicted

What we need: Observe the Higgs boson Find an evidence for physics BSM

LHC is supposed to solve this problems

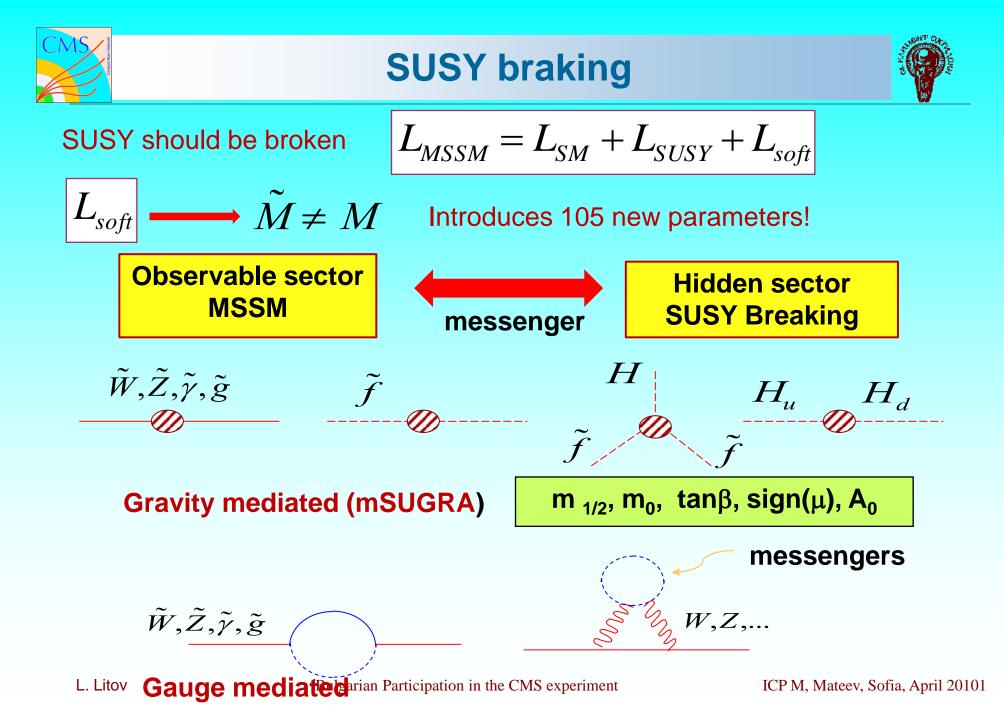
eev, Sofia, April 20101

spin 0	spin 1/2	spin 1	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$ ilde{u}_L, ilde{d}_L$	u_L, d_L		3	2	$+\frac{1}{3}$
$ ilde{u}_R$	u_R		3	1	$+\frac{4}{3}$
$ ilde{d}_R$	d_R		3	1	$-\frac{2}{3}$
$ ilde{ u}, ilde{e}_L$	$ u, e_L$		1	2	-1
$ ilde{e}_R$	e_R		1	1	-2
$\boxed{H^+_u, H^0_u}$	$ ilde{h}^+_{m{u}}, ilde{h}^0_{m{u}}$		1	2	+1
H^0_d, H^d	$ ilde{h}^0_d, ilde{h}^d$		1	2	-1
	$ ilde{g}$	g	8	1	0
	$ ilde{w}^{\pm}, ilde{w}^{0}$	W^{\pm}, W^0	1	3	0
	$ ilde{b}^0$	B^0	1	1	0

Leandar Litov ICP M, Mateev, Sofia, April 20101

The bino, wino, zino and higgsino are not mass aigenstates The observable states are:

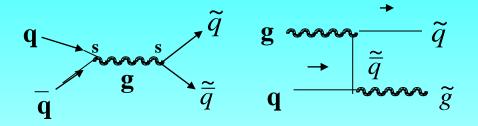
$$\tilde{W}, \tilde{Z}, \tilde{\gamma}, \tilde{H}_{u, d} \Longrightarrow \tilde{\chi}^{\pm}, \tilde{\chi}^{0}$$

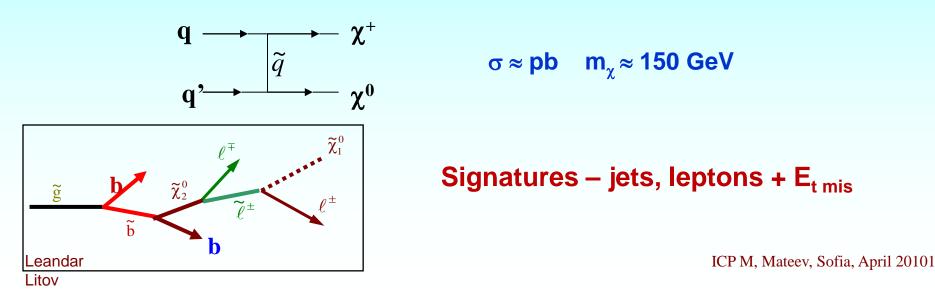

Charginos, neutralinos

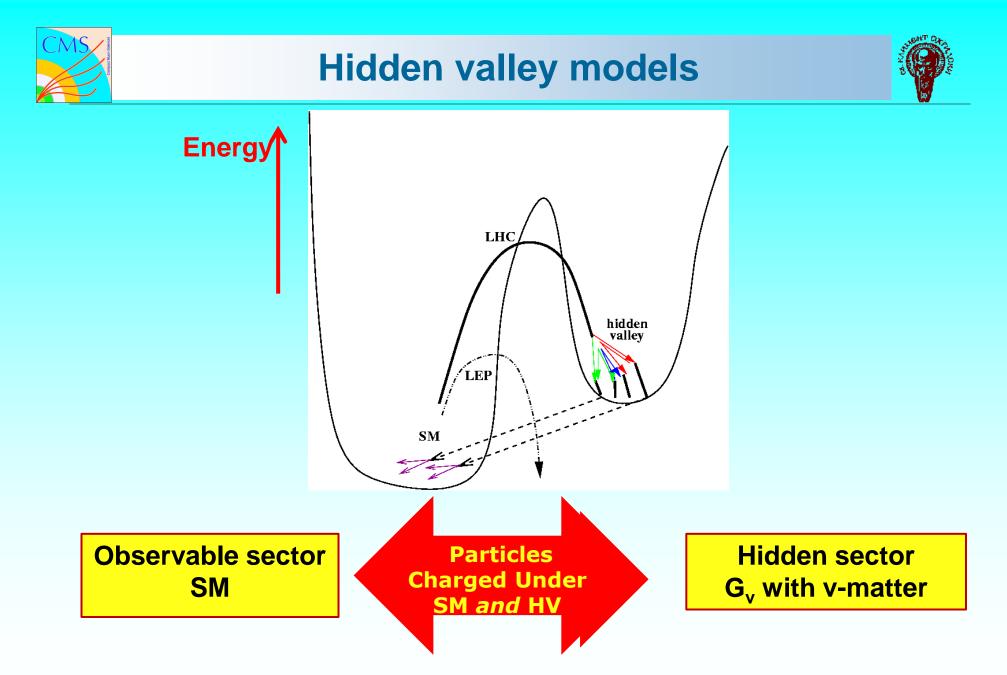
To ensure B and L conservation – a new symmetry R-parity

$$P_R = (-1)^{3(B-L)+2s}$$
 SM Particles: $P_R = +1$
Superpartners: $P_R = -1$

Stable proton

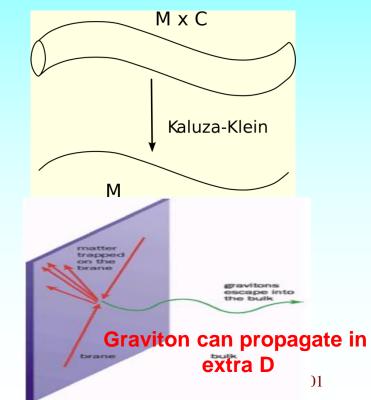

Supersymmetric partners are created in pairs Lightest supersymmetric particle – stable (neutralino) Natural candidate for dark mater





Suarks and gluinos are prodiced via strong interactions → large cross section

 Charginos, neutralinos, sleptons direct production occurs via electroweak processes → much smaller rate (produced more abundantly in squark and gluino decays)



- Inspired by old Kaluza-Klain idea for unified description of gravity and EM
- Revoked in the context of SUSY and String theories
- Basic idea we are living in 4 +n dimensions
- The SM particles are bind to the 4- dimensional world
- The graviton and possibly some other particles are able to travel in all dimensions
 M x C
- Two main approaches
 - The extra dimensions are compactyfied Large Extra Dimensions (LED)
 - The extra dimensions are flat Brain world
 - Particular case warped extra dimensions Randal –Sundrum models with two brains situated at the ends of orbifold
- Many different models

Graviton propagate in all dimensions

$$M_D^{n_{ED}+2} = M_{Pl}^2 / r^{n_{ED}}$$

r – is the size of the extra dimensions, n_{ED} – is the number of extra dimensions

Production of massive Kauza-Klain modes is expected

KK decay to SM particles (di-photon, di-lepton etc)

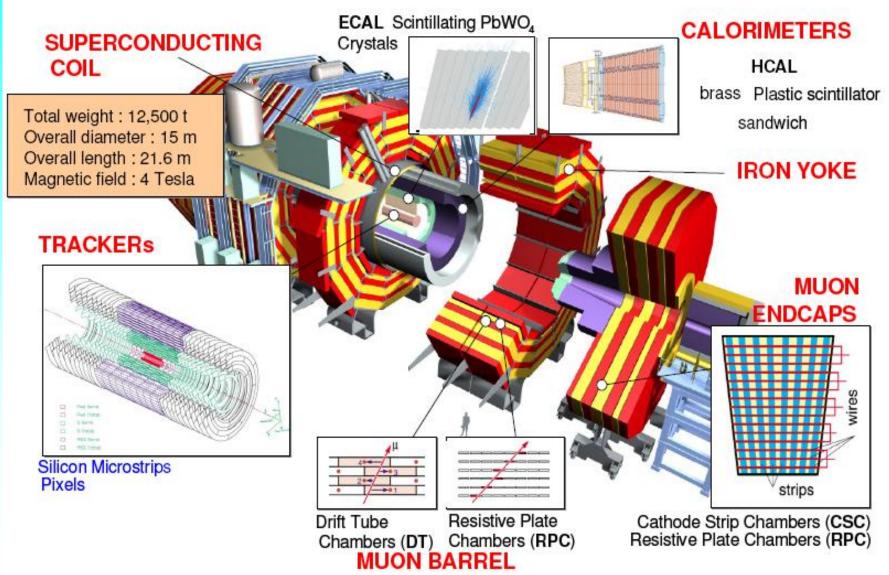
Sum on KK modes – ultraviolet cut M_s is needed

The contribution of the virtual graviton production is parameterized by single variable

$$\eta_{\rm G} = F / M_{\rm s}^4$$

F = 1	Guidice, Rattazzi and Wells,			
M^{2}		GRW		
$F = \log(\frac{M_s^2}{\hat{s}})$	if	$n_{ED} = 2$		
ъ Э		Han, Lykken and Zhang		
$F = \frac{2}{n_{ED} - 2}$	if	$n_{ED} > 2$ (HLZ)		

In the GRW convention the leading order phenomenology is controlled by a single Parameter

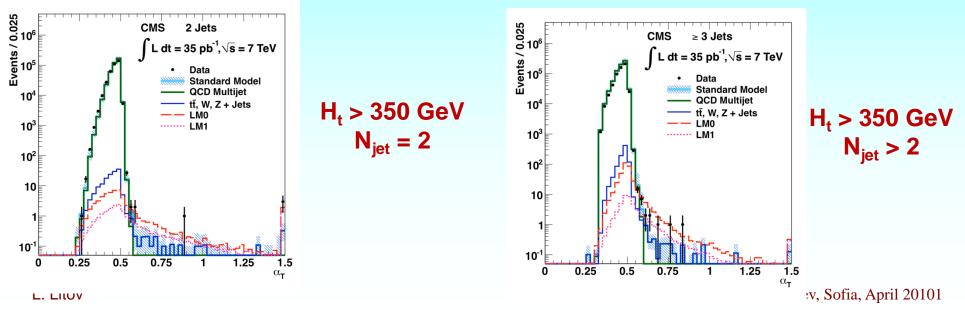

$$\Lambda_{T}^{4} = \frac{8\pi\Gamma(n/2)}{2\pi^{n/2}c_{1}} \frac{M_{D}^{n+2}}{\Lambda^{n-2}}$$

Results for Λ can be connected with M_s and n parameterization in the HLZ convention

The CMS detector

- In all cases we expect missed E_t due to LSP and some jets and leptons
- Several investigations
 - > Jets + missing E_t
 - > Lepton pairs + jets + missing E_t
 - > Two or more photons + jets + missing E_t

SUSY – jets and \mathbb{E}_t


We reconstruct events with at least two jets and significant \mathbb{E}_t Reconstructed jets with $E_t > 50 \text{ GeV}$ N ...

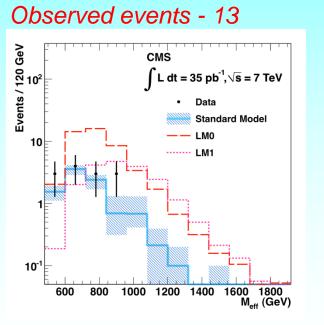
Define hadron transfer energy

$$H_t = \sum_{j=1}^{N_{jet}} E_T^j$$

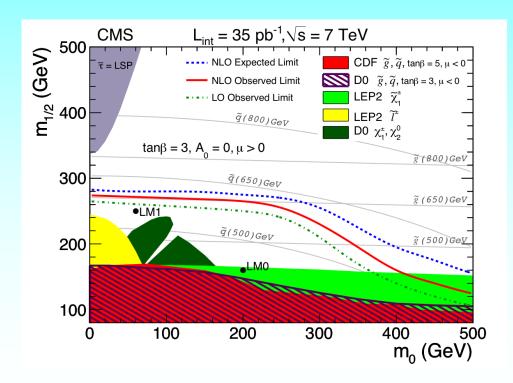
LM0 $m_0 = 200 \text{ GeV}, m_{1/2} = 160 \text{ GeV}, A_0 = -400 \text{ GeV}, \tan\beta = 10, \text{ and } \operatorname{sign}(\mu) > 0$ LM1 $m_0 = 60 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = 0, \tan\beta = 10, \text{ and } \operatorname{sign}(\mu) > 0.$

To supress background – use $\alpha_T = E_T^{j2} / M_T$

SUSY – jets and **E**_t



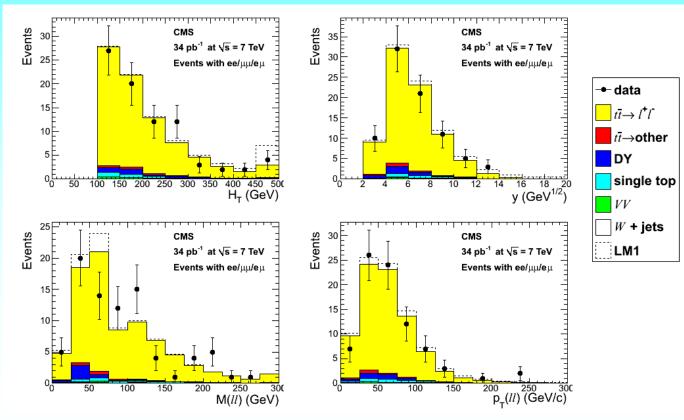
Background was estimated from data


3 regions $250 < H_t < 300, 300 < H_t < 350, H_t > 350 \text{ GeV}$

Two independent methods-- inclusive 9.4+4.8-4.0(stat) ± 1.0(syst)

- $W \rightarrow \mu v + jet$ 6.1+2.8-1.9(stat) ± 1.8(syst)
- $Z \rightarrow v.v + jets$ 4.4+2.3-1.6(stat) ± 1.8(syst).

Total EWK 10.5+3.6-2.5

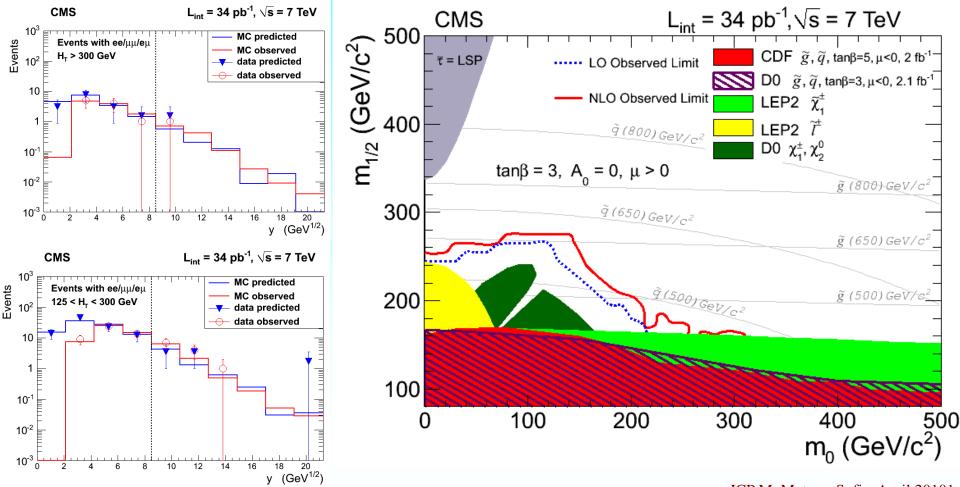


SUSY – di-lepton search

Lepton pairs with opsite charges e^+e^- , $e^\pm\mu^\mp$, $\mu^+\mu^-$ Selections – two leptons with $E_t > 20$ GeV and $E_t > 10$ GeV At least two jets with $p_t > 30$ GeV and $H_t > 100$ GeV, $E_t > 50$ GeV Signal region $H_t > 300$ GeV and y > 8.5 GeV^{1/2}, $y = E_t^{miss} / \sqrt{H_t}$

SUSY – di-lepton search

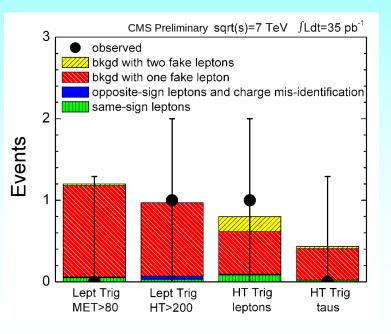
sample	$N_{\rm A}$	$N_{\rm B}$	$N_{\mathbf{C}}$	$N_{\rm D}$	$N_{\rm A} imes N_{\rm C}/N_{\rm B}$
$t ar{t} ightarrow \ell^+ \ell^-$	8.44 ± 0.18	32.83 ± 0.35	4.78 ± 0.14	1.07 ± 0.06	1.23 ± 0.05
$t \overline{t} ightarrow ext{other}$	0.12 ± 0.02	0.78 ± 0.05	0.16 ± 0.02	0.02 ± 0.01	0.02 ± 0.01
Drell Yan	0.17 ± 0.08	1.18 ± 0.22	0.04 ± 0.04	0.12 ± 0.07	0.01 ± 0.01
W^{\pm} + jets	0.00 ± 0.00	0.09 ± 0.09	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
W^+W^-	0.11 ± 0.01	0.29 ± 0.02	0.02 ± 0.01	0.03 ± 0.01	0.01 ± 0.00
$W^{\pm}Z$	0.01 ± 0.00	0.04 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
ZZ	0.01 ± 0.00	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
single top	0.29 ± 0.01	1.04 ± 0.03	0.04 ± 0.01	0.01 ± 0.00	0.01 ± 0.00
total SM MC	9.14 ± 0.20	36.26 ± 0.43	5.05 ± 0.14	1.27 ± 0.10	1.27 ± 0.05
data	12	37	4	1	1.30 ± 0.78
LM0	4.04 ± 0.19	4.45 ± 0.20	13.92 ± 0.36	8.63 ± 0.27	12.63 ± 0.88
LM1	0.52 ± 0.02	0.26 ± 0.02	1.64 ± 0.04	3.56 ± 0.06	3.33 ± 0.27

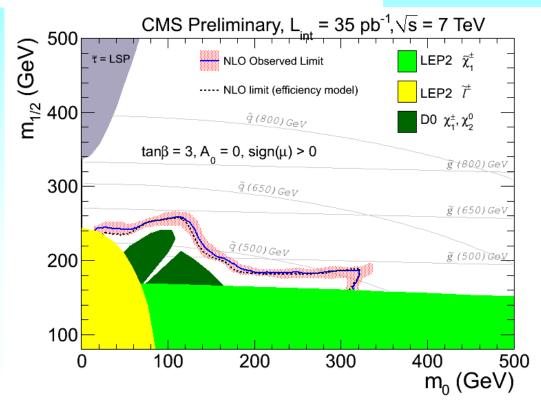


L. LIUV

Background estimated from data, Three control regions and one signal $H_t > 300 \text{ GeV}$ and $y > 8.5 \text{ GeV}^{1/2}$ | Expected 1.27 +/- 0.05, Observed 1 event

ICP M, Mateev, Sofia, April 20101

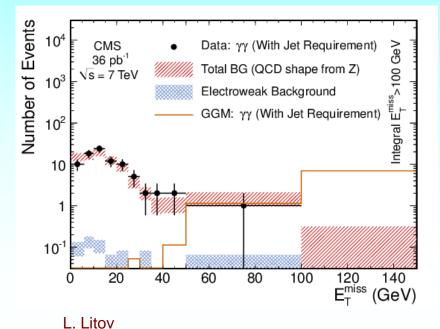

SUSY – di-lepton search

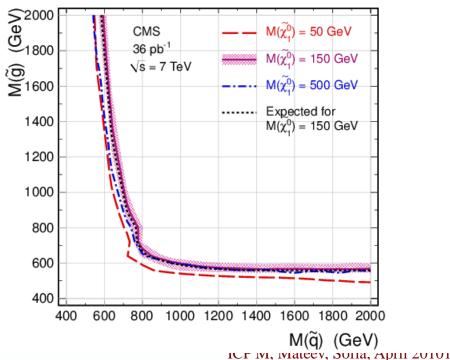


01

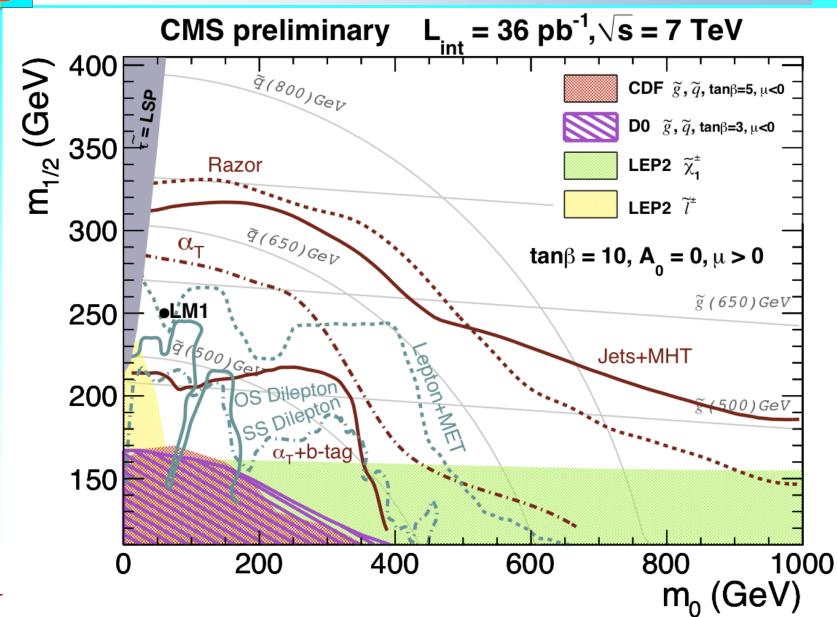
Search with same sign leptons

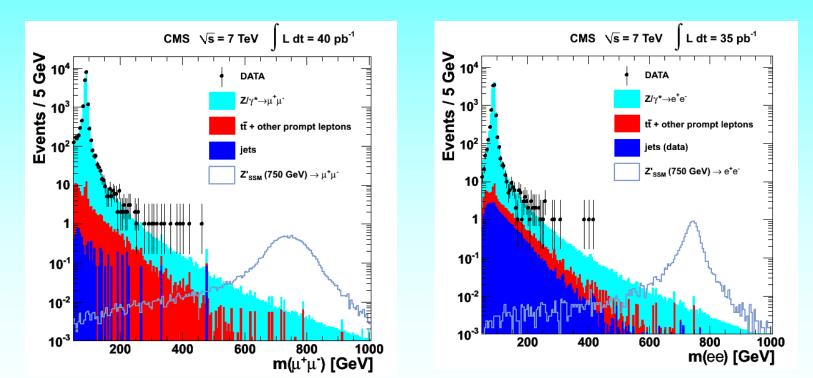
	Simu	lation	Data		
	Only S	M BKG	Relaxed selection		
Channel	Observed Predicted		Observed	Predicted	
ττ	0.08 ± 0.03	$0.15 {\pm} 0.15$	14	$14.0 \pm 4.3 \pm 2.6$	
ετ	0.35 ± 0.12	$0.30 {\pm} 0.11$	1	$0.8{\pm}0.4{\pm}0.1$	
μτ	0.47 ± 0.15	$0.49 {\pm} 0.20$	2	$2.9{\pm}0.6{\pm}0.4$	

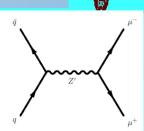



L. Litov

In SUSY models with Gauge Mediated SUSY (GGM) breaking LSP is gravitino, NLSP neutralino, $G \rightarrow \chi^0 + \gamma$, we are looking for events with at least 2 or more isolated photons (E_t > 30 GeV), at least one jet (E_t > 30 GeV) and Large $E_t > 50$ GeV. Expected events (BG) – 1.71+/-0.64 events Expected from GGM – 8 +/- 1.7 events Observed – 1 event

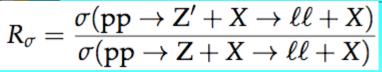






Search for Z'/RS Graviton

Search for heavy narrow resonances decaying to two leptons $Z' \rightarrow I^+ I^-$ and $G_{kk} \rightarrow I^+ I^ L_{int} = 40 \text{ pb}^{-1}$ for dimuon channel and 35 pb⁻¹ for dielectron channel





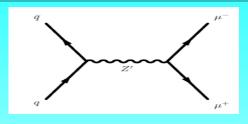
Search for Z'/RS Graviton

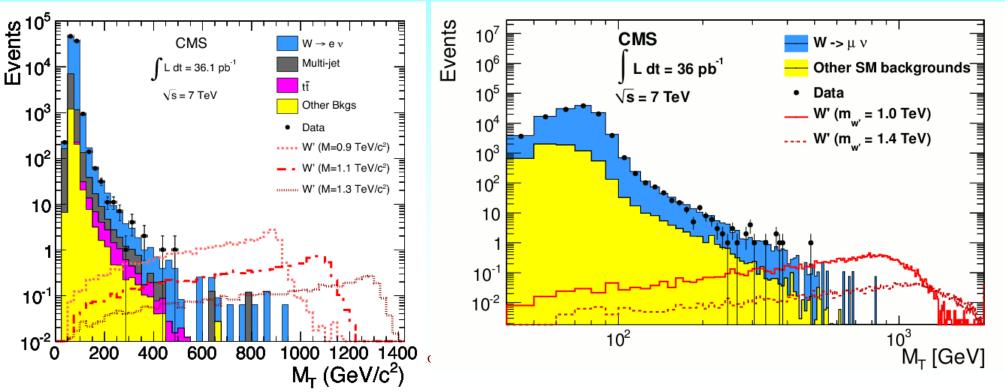
Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Ζ _ψ	792 GeV	731 GeV	887 GeV
G _{KK} , k/M _{Pl} = 0.05	778 GeV	729 GeV	855 GeV
G _{KK} , k/M _{Pl} = 0.10	987 GeV	931 GeV	1079 GeV

Results more restrictive than or comparable to those previously published by Tevatron (5/fb) & LEP experiments

> larXiv: 1103.0981, submitted to JHEP

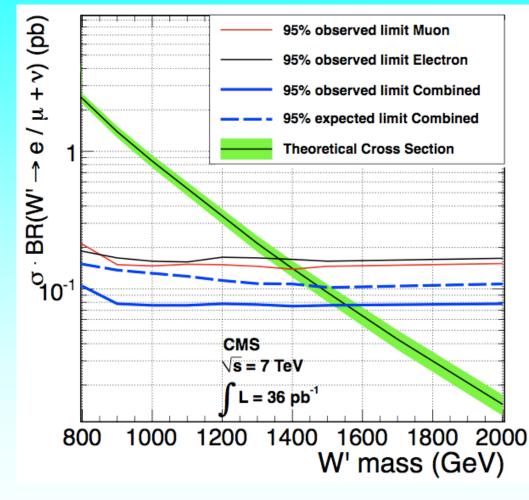
ICP M, Mateev, Sofia, April 20101

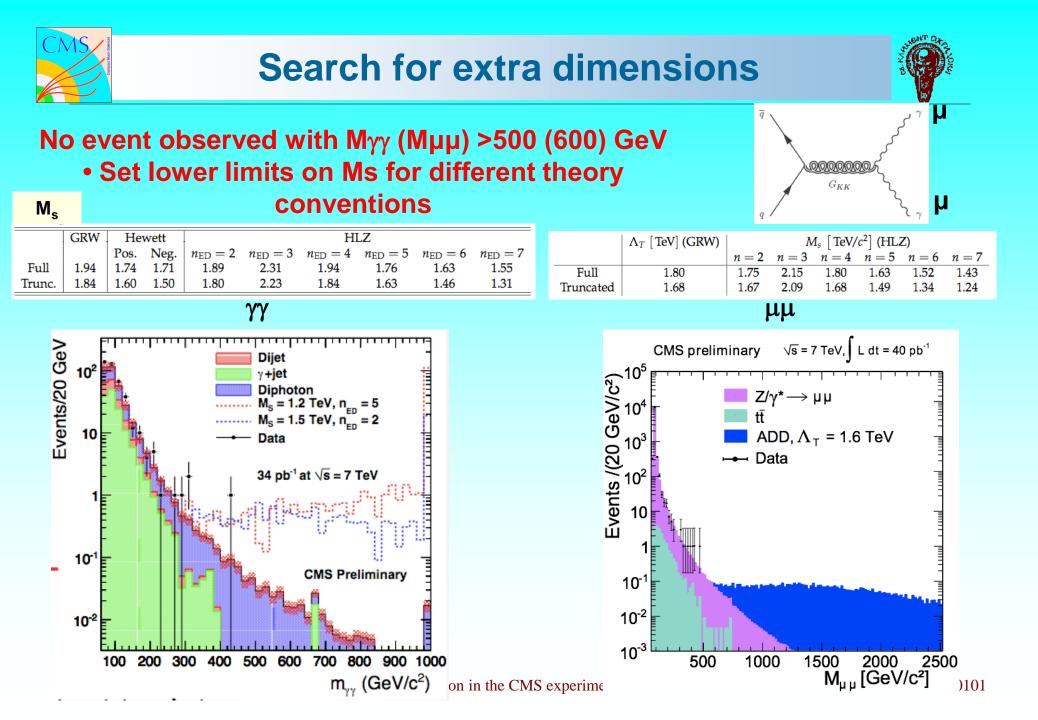

W' Searches (ev+µv)

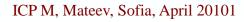

$$M_T = \sqrt{2E_T^{\ell} E_T^{miss} [1 - \cos \Delta \phi(\ell, E_T^{miss})]}$$

And look at Jakobian peak Search for $M_{W'}$ in the range 0.6-2 TeV - $M_T(ev)>400-675$ GeV; 2-0 obs. ev.

 $-M_T(\mu v)$ >390-690 GeV; 1-0 obs. ev.

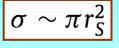

Consistent with SM, set limits

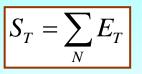

W' Searches (ev+µv)



M_{W'} >1.36 TeV (ev) M_{W'} >1.4 TeV (μv) M_{W'} >1.58 TeV (ev+μv) Significant improvement over previously published limits

ev \Box arXiv:1012.5945, submitted to PLB μ v \Box arXiv:1103.0030, submitted to PLB


If gravity scale is lowered to M_d, **black holes** with mass M_{BH} could be produced when partons interact at distances closer than r_s • Democratic BH decay (via Hawking radiation) to all SM degrees of freedom

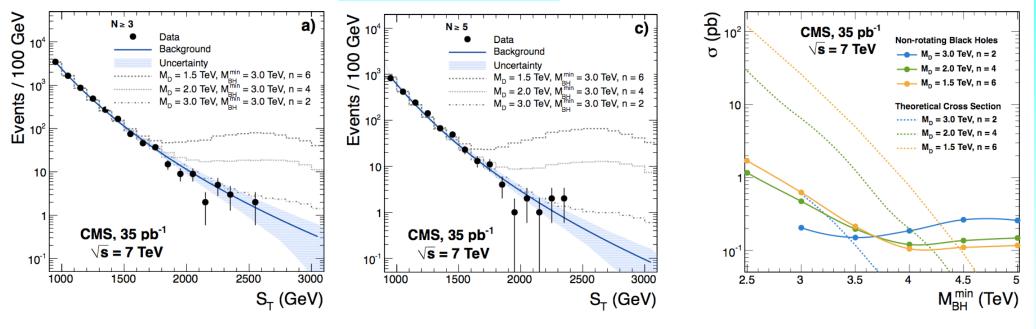

(75% are quarks and gluons thanks to color)

- Search for deviation in S_T distribution in "object multiplicity" (N) inclusive bins
- S_T shape invariant w.r.t. multiplicity
- Use S_T spectrum from N=2 to predict

N>=3,4,5, where signal would be present

$$r_{\rm S} = \frac{1}{\sqrt{\pi}M_D} \left[\frac{M_{\rm BH}}{M_D} \frac{8\Gamma(\frac{n+3}{2})}{n+2} \right]^{\frac{1}{n+1}}$$

jets,e,γ,μ with ET>50 GeV + MET (if >50 GeV)



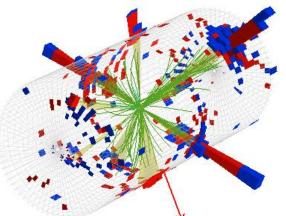
No excess observed, set limits on the min.

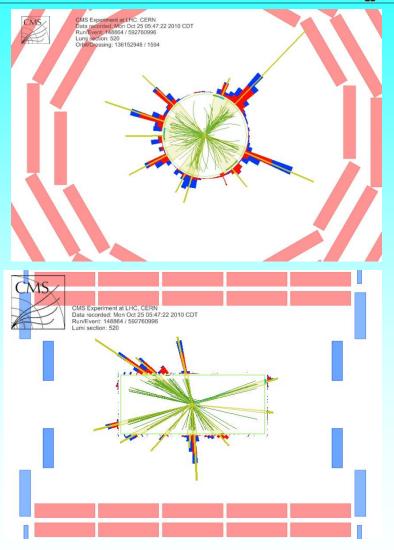
BH mass in semi-classical approximation

$$M_{BH}^{\min} > 3.5 - 4.5 TeV$$

PLB 697:434-453 (2011)

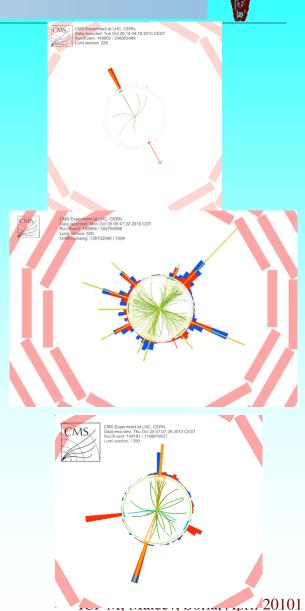
ICP M, Mateev, Sofia, April 20101



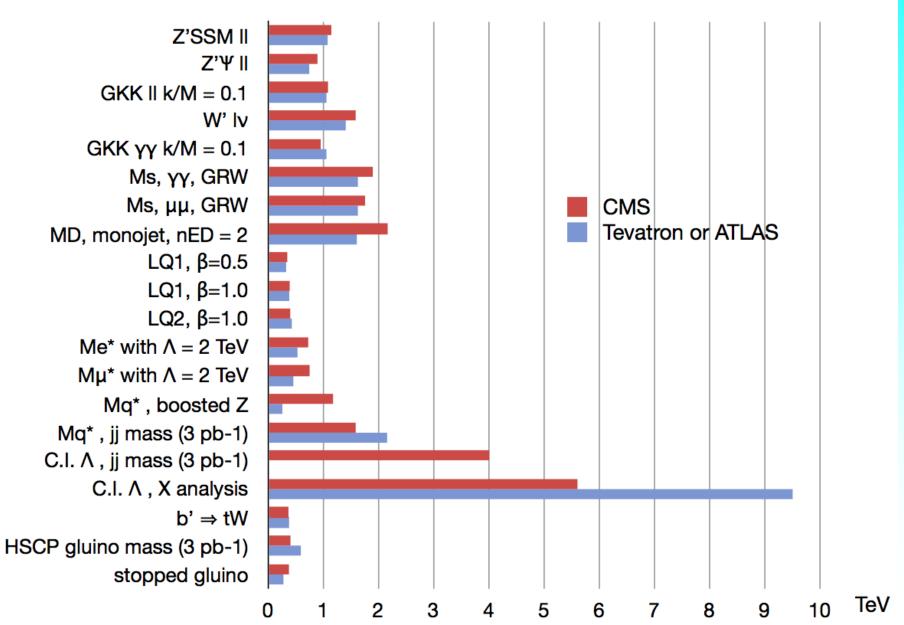


10 - jet event BH candidate $S_T = 1.3 \text{ TeV}$

CMS Experiment at LHC, CERN Data recorded: Mon Oct 25 05:47:22 2010 CDT Run/Event: 148864 / 592760996 Lumi section: 520

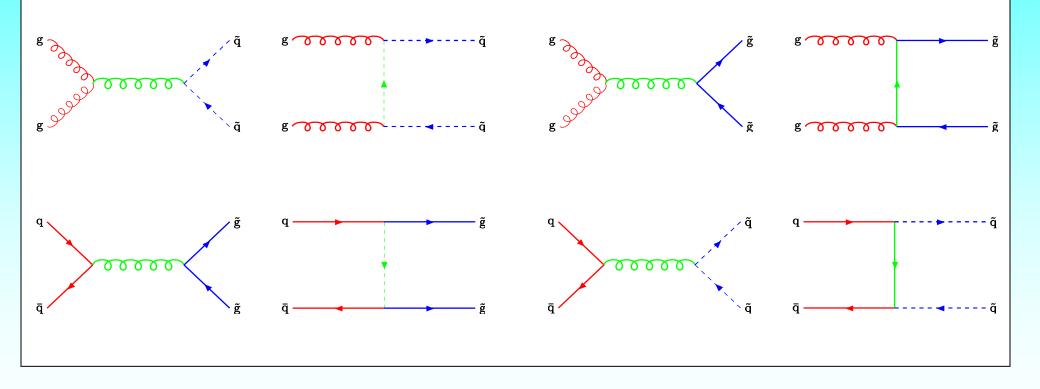


Conclusions



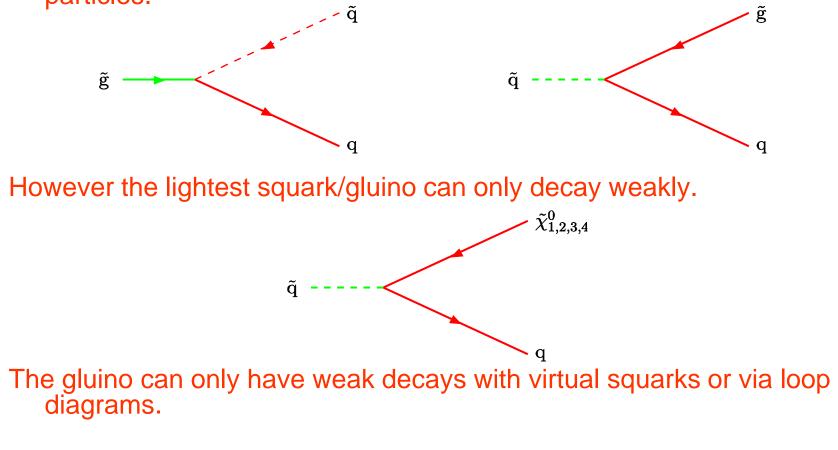
- Search for physics beyond the SM was performed with the CMS detector using data collected in 2010
- There are no statistically significant evidence for new particles or phenomena
- A new more stringent limits on this new phenomena ware set
- These results demonstrate good understanding of the detector and backgrounds
- This ensures the successful searches in view of forthcoming new 2011 data

Summary



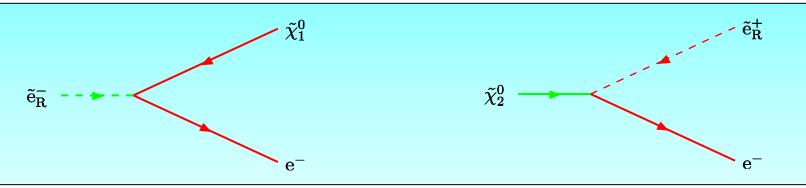
SUSY Production

In hadron collisions the strongly interacting particles are dominantly produced. Therefore in SUSY squark and gluino production has the highest cross section.



SUSY Decays

These particles then decay in a number of ways. Some of them have strong decays to other strongly interacting SUSY particles.


Leandar Litov

SUSY Decays

- This is the main production mechanism for the weakly interacting SUSY particles.
- The decays of the squarks and gluinos will produce lots of quarks and antiquarks.
- The weakly interacting SUSY particles will then decay giving more quarks and leptons.

- Eventually the lightest SUSY particle which is stable will be produced.
- > This behaves like a neutrino and gives missing transverse energy.
 - So the signal for SUSY is large numbers of jets and leptons with missing transverse energy.
- This could however be the signal for many models containing new

The SM is based on SU_c (3) x SU_L (2) x U_Y (1) gauge group

quarks		leptons		Bosons
u	d	e	ν _e	γ
С	S	μ	ν _μ	Глуон 9
t	b	τ	ν _τ	W±иZ
Spontaneous symmetry breaking				Higgs? H

The problem with masses – a physical variable defined by the space-time symmetry.

Way out – unification of strong and eletroweak interactions with gravity.

The solution is a new kind of symmetry – between fermions and bosons Group \rightarrow Super group – new spinor generators Super Algebra – commuting and anticommuting generators $Q_{\alpha}|F> \rightarrow |B>$ and $Q_{\alpha}|B> \rightarrow |F>$ SM particles form supermultiplets Equal number fermions and bosons – new particles However particles in one multiplet have equal masses Supersymmetry should be broken

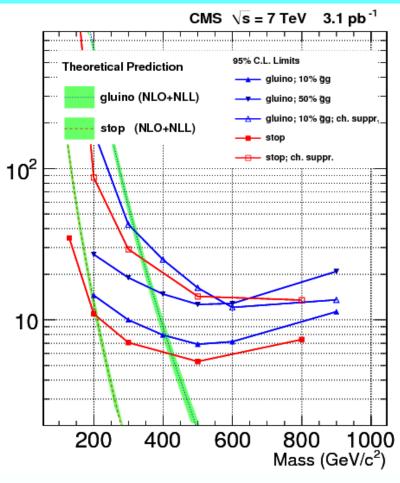
Leandar Litov

Problems

- Many parameters
 - Values of couplings, masses and mixings?
- The origin of the electroweak symmetry breaking
- The mechanism of mass generation (Higgs mechanism)
- The fine tuning problem
 - ✓ The cosmological constant puzzle
 - ✓ The strong CP-problem
 - ✓ The gauge hierarchy problem
- The SM is logically not complete Unification with gravity
- Describes only 4% of the Universe
 - ✓ Dark mater
 - ✓ Dark energy

- Many extensions of the SM predict existence of new heavy quasi-stable particles (some SUSY models, hidden valley, GUT, ..)
- Long-lived gluinos are also a hallmark of "split SUSY", where gluino decay is suppressed due to the large gluino-squark mass splitting
- Gluinos hadronize forming R-Hadrons bound states of SUSY particle + gluons or quarks
- We have performed searches for two distinctive signatures of long-lived particles:
 - Massive Charged long-lived particles with high momentum tracks and small velocity β (p/m), highly ionizing (dE/dX) in the silicon tracker
 - Long-lived massive particles stopping in the detector due to electromagnetic and nuclear int. and decaying out-of-time with the collisions

Heavy stable charged particles $\beta > 0.5$



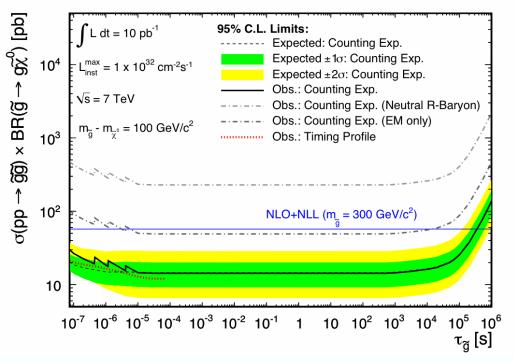
Mass is reconstructed with approximated "Bethe-Bloch formula"

$$\frac{dE}{dx} \propto \frac{1}{\beta} \approx K \frac{m^2}{p^2} + C$$

Zero high mass candidates Limits on cross section and mass set M_{gluino}>311-398 GeV Very recent preliminary ATLAS result with 34/pb extends our limits

> arXiv:1101.1645, submitted to JHEP

Stopped Gluinos β < 0.5


Slow-moving R-Hadrons can lose enough energy in HCAL material to stop Search for decay during times with no beam (time between bunch crossings)

 $\begin{array}{l} {\rm BR}(\tilde{g} \rightarrow g \, \tilde{\chi}_1^0) = 100\% \\ {\rm Single-jet-like \ signature} \\ {\rm Both \ counting \ experiment \ and \ time-profile} \\ {\rm analysis \ consistent \ with \ background \ only} \\ {\rm hypothesis} \end{array}$

Limits:

$$M_{\tilde{g}} > 370~{\rm GeV}, \tau = 10~\mu s - 1000~s$$

PRL 106, 011801 (2011)

