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Introduction

Anti de-Sitter symmetry plays an important

role in modern mathematics and physics. In

mathematics, the n-dimensional anti de Sitter

space AdSn, is a maximally symmetric Lorentzian

manifold with constant negative scalar curva-

ture. It is described as submerged in (n + 1)-
dimensional Euclidean space by the formula:

n−1

∑
i=1

x2
i − x2

0− x2
n = R2 (1)

In general relativity, anti de Sitter space is a

maximally symmetric, vacuum solution of Ein-

stein’s field equation with a negative (attrac-

tive) cosmological constant.

The same space, though in momentum space,

was the founding stepping stone of the quan-

tum field theory with fundamental length de-

veloped by Kadyshevsky and Mateev for more

than 40 years.



In group theory, the isometry group of AdSn is

the pseudo-orthogonal group SO(n-1,2). This

group is also the conformal group of (n− 1)-
dimensional Minkowski space-time.

The latter properties were the group-theoretical

foundation of the so-called AdS/CFT corre-

spondence between objects (e.g., strings) in

the n-dimensional AdSn, called the bulk, and

the (n− 1)-dimensional Minkowski space-time

as boundary of the bulk.

We discuss the simplest characteristic case n =
4 in the algebraic framework, namely, we dis-

cuss mostly the Lie algebra so(3,2). That Lie

algebra is the first that was called anti de Sitter

algebra.



Preliminaries

The anti de Sitter algebra G = so(3,2) is
ten-dimensional. It is a split form of its com-
plexification GCI = so(5,CI) and we can use
the same basis for both (though over different
fields, IR,CI, resp.).

For GCI we use the standard (triangular) de-
composition:

GCI = G−⊕H ⊕G+ , (2)

where H is the diagonal two-dimensional Car-
tan subalgebra with generators denoted by H1,H2,
G+,G− are four-dimensional subalgebras of rais-
ing, lowering, generators X+

i , X−i , resp., i =
1,2,3,4. For simplicity we give the following
basis in terms of 4×4 matrices:

H1 =
(

σ3 0
0 σ3

)
, H2 =

(
e2 0
0 −e1

)
, (3)

X+
1 =

(
σ+ 0
0 −σ+

)
, X−1 =

(
σ− 0
0 −σ−

)
,



X+
2 =

(
0 σ−
0 0

)
, X−2 =

(
0 0

σ+ 0

)
,

X+
3 =

(
0 12
0 0

)
, X−3 =

(
0 0
12 0

)
,

X+
4 =

(
0 σ+
0 0

)
, X−4 =

(
0 0

σ− 0

)
,

e1 ≡ 1
2(1+σ3) =

(
1 0
0 0

)
, e2 ≡ 1

2(1−σ3) =
(

0 0
0 1

)

σ+ ≡ 1
2(σ1 + iσ2) =

(
0 1
0 0

)
, σ− ≡ tσ+ =

(
0 0
1 0

)

where σi are the standard 2×2 Pauli matrices.

Using the same basis over IR the anti de Sitter

algebra G has the following (Bruhat) decom-

position

G = N−⊕M ⊕A ⊕N+ (4)

in which the four subalgebras have physical

meaning related to the fact that G is also the

conformal algebra of three-dimensional Minkowski

space-time M3. Namely, the subalgebra M ∼=



so(2,1) is the Lorentz algebra of M3, the subal-

gebras N± (with basis X±k , k = 2,3,4) are abelian

and represent the translations of M3 and spe-

cial conformal transformations of M3, and the

algebra A (spanned by H3≡H1+2H2) represents

the dilatations of M3.



Representations and invariant operators

We work with two kind of representations. Both

are characterized by two quantum numbers E0,s0
called energy and spin, s0 = 0, 1

2, . . ..

The first kind are the so-called elementary

representations (ERs), denoted by CΛ, where

Λ is a weight Λ ∈ H ∗ depending on E0,s0 .

These can be realized as complex-valued C∞

functions on GCI/B, where G = SO0(3,2), B =
exp(H )exp(G+) is a Borel subgroup of GCI. Since

GCI/B is a completion of G−= exp(G−) we shall

use the four local coordinates of G− denoted

by: z,u,v,x. The functions of CΛ, denoted

ϕ̂(z,u,v,x) , are polynomials in the variable z of

degree 2s0 and smooth functions in the other

three variables.

The other kind of representations are highest

weight modules, in particular, Verma modules.



Verma modules give explicit realization of the

so-called positive energy UIRs D(E0,s0) of G

given as follows [Dirac,Fronsdal,Evans,FF]:

D(E0,s0) = D(1/2,0) , D(E0,s0) = D(1,1/2) ,

D(E0 > 1/2+ s0, s0 = 0,1/2),

D(E0 ≥ s0 +1, s0 ≥ 1) . (5)

The first two are the singleton representations

discovered by Dirac, and called later ”Rac”,

”Di”, resp. The last ones for E0 = s0 +1 corre-

spond to the spin-s0 massless representations.

Pictorially, all positive energy UIRs are given in

Figures 1 and 2:



E0 = s0 + k DS•

6

E0 = s0 + 3 DS•

.........

E0 = s0 + 2 LDS•

E0 = s0 + 1 FRP•

Fig. 1. so(3, 2), s0 = 1, 3

2
, ...

black dots denote representations - irreducible factors of reducible CΛ and V Λ,
DS means discrete series of unitary representations,
LDS means limit of discrete series representations,
FRP means First reduction point - the end point of the PE representations



E0 = s0 + k DS•

6

.........
E0 = s0 + 3 DS•

E0 = s0 + 2 LDS•

•E0 = s0 + 1 FRP

•E0 = s0 + 1

2
below FRP

s0 = 0, 1

2
Rac, Di

Fig. 2. so(3, 2), s0 = 0, 1

2



The other property of Verma modules that we

use, is the fact that it is easy to find when they

are reducible. In our situation this happens

every time when at least one of the following

four numbers:

m1 = Λ(H1)+1 = 2s0 +1 , (6)

m2 = Λ(H2)+1 = 1−E0− s0 ,

m3 = m1 +2m2 , m4 = m1 +m2

is a positive integer.

An important application of the above reducibil-

ity is that when the Verma module V Λ is re-

ducible, then also the ER CΛ is reducible. Fur-

thermore, in these cases there exist invariant

differential operators between the ERs, and

these operators are determined in a straight-

forward way from special objects in the corre-

sponding Verma modules, called singular vec-

tors [Dob].



All singular vectors and the corresponding in-

variant differential operators and equations are

known [Dob], but for the lack of time we shall

show only some operators that are related to

the positive energy cases.

For instance, since m1 is always a positive in-

teger, there is always the following invariant

operator: (∂z)m1, and in order to obtain irre-

ducibility w.r.t. to the variable z, (recall that

our functions ϕ̂ are polynomials in z of degree

2s0 = m1−1), there is always the invariant equa-

tion:

(∂z)m1 ϕ̂(z,u,v,x) = 0 . (7)

Rac: E0 = 1
2, s0 = 0. There are two equations:

∂z ϕ̂ = 0 , m1 = 1 ,(
∂ 2

x −4∂u∂v

)
ϕ̂ =

(
∂ 2

0 −∂ 2
1 −∂ 2

2

)
ϕ̂ =

= ¤ ϕ̂ = ϕ̂ ′ , m3 = 2 , (8)



where we have introduced new variables y0 = x ,
y1 = 1

2(u+v), y2 = i1
2(u−v), in terms of which we

get the d’Alembert operator ¤ in M3.

The functions ϕ̂ ′ belong to the target space

CΛ′, also unitary of scalar functions (since E ′0 =
3
2, s′0 = 0), but fulfilling only the first equation

in (8).

Di: E0 = 1, s0 = 1
2. The two equations are:

∂ 2
z ϕ̂ = 0 , m1 = 2 ;

{ 1
2 (∂x−2z∂u) +(∂v− z∂x + z2∂u)∂z } ϕ̂ = ϕ̂ ′ ,

m3 = 1 . (9)

Massless representations: E0 = s0+1, s0 = 1, 3
2, . . .

The equations are:

∂ p+1
z ϕ̂ = 0 , p = 2s0 = 2,3, . . . ,

{ p(p−1)∂u + (p−1)(∂x−2z∂u)∂z + (10)

+ (∂v− z∂x + z2∂u)∂ 2
z } ϕ̂ = ϕ̂ ′ , m4 = 1 .



It is useful to write out (10) in components

using: ϕ̂ = ∑p
j=0 z j ϕ̂ j , ϕ̂ ′ = ∑p−2

j=0 z j ϕ̂ ′j . The

resulting equations are:

(p− j)(p− j−1)∂u ϕ̂ j + ( j +1)(p− j−1)∂x ϕ̂ j+1 +

+( j +1)( j +2)∂v ϕ̂ j+2 = ϕ̂ ′j , j = 0,1, . . . , p−2 .

If we restrict to the kernel then the last equa-

tions may be rewritten as equations for p−1
independent conserved currents Jp, j in M3 :

∂0 Jp, j
0 − ∂1 Jp, j

1 − ∂2 Jp, j
2 = 0 , j = 0, . . . , p−2 ,

(11)

where the components are given as follows:

Jp, j
0 = −( j +1)(p− j−1) ϕ̂ j+1 , (12)

Jp, j
1 = 1

2{( j +1)( j +2) ϕ̂ j+2 + (p− j)(p− j−1) ϕ̂ j } ,

Jp, j
2 = i

2{( j +1)( j +2) ϕ̂ j+2 − (p− j)(p− j−1) ϕ̂ j } .



Character formulae

Let G be any simple Lie algebra. Let Γ+ be
the set of all integral dominant elements of
H ∗ , i.e., λ ∈H ∗ such that λ (Hi) ∈ ZZ , (resp.
ZZ+ ), for all Hi of the basis of H . We recall
that for each invariant subspace V of a Verma
module V Λ we have the following decomposi-
tion

V = ⊕
µ∈Γ+

Vµ , Vµ = {u∈V | Hku =(Λ+µ)(Hk)u, ∀ Hk}

The character of V is defined by [Dixmier]:

ch V = ∑
µ∈Γ+

(dim Vµ)e(Λ+ µ)

where the formal exponents e(µ) have the
properties e(0) = 1, e(µ)e(ν) = e(µ +ν) . Further-
more for the character of the Verma module
we have [Dixmier] :

ch V Λ = e(Λ) ∏
α∈∆+

(1− e(α))−1 (13)



where ∆+ ⊂H ∗ is the positive root system of

G .

The Weyl character formula for the finite-dimen-

sional irreducible representations has the form

[Dixmier]:

ch LΛ = ∑
w∈W

(−1)`(w) ch V w·Λ , (14)

where W is the Weyl group of G and we use

the fact that W acts on Λ.

Let G = so(3,2) . The positive root system ∆+

has four roots: αi, i = 1,2,3,4, so that α3 =
α1 +α2, α4 = 2α1 +α2. Denote ti≡ e(αi) , i = 1,2 ,

then e(α3) = t1t2 , e(α4) = (t1)2t2 . Then (13)

and (14) can be rewritten, respectively, as

ch V Λ =
e(Λ)

(1− t1)(1− t2)(1− t1t2)(1− (t1)2t2)
,

ch LΛ = ch V Λ (1 − tm1
1 − tm2

2 + tm1
1 tm1+m2

2 +



+ tm1+2m2
1 tm2

2 − t2(m1+m2)
1 tm1+m2

2 −
− (t1t2)

m1+2m2 + t2(m1+m2)
1 tm1+2m2

2 ) (15)

In the last formula we have used the fact that

the Weyl group for G has eight elements given

explicitly in terms of the generating elements

w1,w2 as follows:

W = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2,

w1w2w1w2 = w2w1w2w1 } . (16)

The character formulae for the infinite-dimen-

sional irreducible highest weight representations

over so(3,2) involve less terms than in (15)

since the maximal invariant submodules IΛ of

V Λ are smaller. These character formulae

can be given in terms of reduced Weyl groups

[Dob]. This means that the character formulae

for the infinite-dimensional irreducible highest

weight representations over so(3,2) will look

like the Weyl character formula (14), however



with W replaced by certain subgroups of W ,
called reduced Weyl groups.

For the singletons the reduced Weyl group
WR = W s is given by:

W s = { 1 , w1 , w2w1w2 , w1w2w1w2 } . (17)

Then the character formula for the singletons
is:

ch Ls = ch V Λ ∑
w∈W s

(−1)`(w)e(w ·Λ−Λ) =

= ch V Λ ( 1 − tm1
1 − (t1t2)

m1+2m2 +

+ t2(m1+m2)
1 tm1+2m2

2 ). (18)

More explicitly for the Rac we have m1 = 1 ,
m2 = 1/2 and we obtain:

ch LRac = ch V Λ ( 1 − t1 − (t1t2)
2 + t3

1t2
2 ) =

=
e(Λ) ( 1 + t1t2 )
(1− t2)(1− (t1)2t2)

=

= e(Λ)
∞
∑

n=0
(t1t2)

n
n

∑
p=−n

t p
1 =



= e(Λ)
∞
∑

n=0

n

∑
p=−n

(t1t2)
n−|p| t′|p| , (19)

where

t′ =
{

t2
1t2 = e(α4) for p > 0 ,

t2 = e(α2) for p < 0 .

Analogously the Di we have m1 = 2 , m2 = −
1/2 and we obtain:

ch LDi = ch V Λ ( 1 − t2
1 − t1t2 + t3

1t2 ) =

=
e(Λ) ( 1 + t1 )

(1− t2)(1− (t1)2t2)
=

= e(Λ)
∞
∑

n=0
(t1t2)

n
n+1

∑
p=−n

t p
1 = (20)

= e(Λ)
∞
∑

n=0
tn
2

n

∑
r=0

( t2r
1 + t2r+1

1 )

Clearly, the terms in (19) have different weights,

i.e., each weight is represented only once. The



same is true for (20). That is why these rep-

resentations are called singletons. These for-

mulae were known, but this derivation is orig-

inal.

Finally we consider the massless representa-

tions with E0 = s0 +1 , s0 ≥ 1. Let us define

W ′ ≡ { 1, w1, w1w2w1, w2w1 }. Note that the

set W ′ is not a subgroup of W , but neverthe-

less, the character formula is valid:

ch Lmassless = ch V Λ ∑
w∈W ′

(−1)`(w)e(w ·Λ−Λ) =

= ch V Λ (1− tm1
1 − t2

1t2 + tm1
1 t2) ,(21)

m1 = 1+2s0 ≥ 3.



Quantum group case

The quantum group associated to a Lie alge-

bra G is given by a deformation Uq(G ) of the

universal enveloping algebra U(G ) depending on

a parameter q (there are also multiparameter

deformations!). Explicitly, the deformation oc-

curs by replacing some commutators by their

q-analogs, e.g., in our case

[X+,X−] = H (22)

is replaced by:

[X+,X−] = [H]q ≡ qH−q−H

q−q−1 (23)

Matters are arranged so that the undeformed

case is obtained from the deformed by setting

q = 1. Indeed, setting q = eh and taking the

limit h→ 0, we see that (23) passes to (22).

Generically, the main features of the represen-

tations of the quantum group deformation are



the same as for the undeformed case, the only

difference being that in matrix elements num-

bers, e.g., n, are replaced by q-numbers [n]q,
defined as above.

There is one interesting situation, where things

differ drastically. First, we restrict the param-

eter q on the unit circle, namely, we set q = eiτ,
τ ∈ IR, (|q|= 1). Then the quantum number [n]q
becomes:

[n]q =
qn/2−q−n/2

q1/2−q−1/2
=

sin(τn/2)
sin(τ/2)

(24)

changing to a more refined definition. The

interesting situation is when q is a root of unity:

qN = 1, q = e2πi/N, where N = 2,3, . . . Then the

quantum number becomes:

[n]q =
sin(πn/N)
sin(π/N)

(25)

Obviously,

[N]q = 0



This means that many matrix elements be-
come zero. Furthermore, elements in the en-
veloping algebra like (X±)N become central,
and in fact all representations become finite-
dimensional, including the unitary ones!

For instance, the singleton representations be-
come finite-dimensional and with Moylan have
found the formula for their dimensions. Our
result is:

dim RacN =





N2+1
2 , for N odd

N2

2 , for N even

(26)

dim DiN =





N2−1
2 , for N odd

N2

2 , for N even

(27)

One may ask whether these finite-dimensional
representations coincide with some classical finite-
dimensional representations of the anti de Sit-
ter algebra so(3,2). The answer is that with two



exceptions there are no coincidences. The ex-

ceptions happen for third root of unity, N = 3,
then:

dim RacN=3 = 5 , (28)

dim DiN=3 = 4 , (29)

and these are the dimensions of the two fun-

damental irreps of so(3,2).


