In Honour of Prof. Matey Mateev

Why Neutrinos are different ...

- Very low mass
- Large leptonic mixing
- Leptonic number conserved or not? With link to matter antimatter asymetry

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

What we now from oscillations
in the 3-neutrino picture

Generic prediction of this model:
large mixings, inverted hierarchy suppressed neutrinoless double beta decay
jm frère, Spa , April 2011 in honour of Joseph Cugnon


```
Generic prediction: large mixings,
    inverted hierarchy
    suppressed neutrinoless double beta decay
```

Neutrino-less double beta decay controlled by weighted sum of masses (with signs of mixings entering)

NEUTRINOS MASSES

- $0 v \beta \beta$ decay

partial suppression
$\left|\left\langle m_{\beta \beta}\right\rangle\right| \simeq \frac{1}{3} \sqrt{\Delta m_{\oplus}^{2}}$

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

Why Neutrinos are Different

In a nutshell:

- One family in 6D and proper boundary conditions $\rightarrow 3$ families in 6D
-At lowest order in Cabibbo mixing, Charged fermion masses are
diagonal
strongly hierarchical
At LHC, this can result in rare exotic signals ($Z^{\prime} \rightarrow \mu^{+} \mathrm{e}^{-} \gg \mu^{-} \mathrm{e}^{+}$) but also a « standard » Z' , more readily observed
-At same order, we get 4D Majorana neutrinos with
Antidiagonal mass matrix
-This yields, in a generic way:
Large mixings in the neutrino sector
Inverted Hierarchy
Pseudo- Dirac structure (further suppression of neutrinoless double beta decay)
-Not as automatic, but typical : measurable Θ_{13}

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

A very few words about extra dimensions ... start with ONE extra spatial dim.

What are Zero Modes?

$$
\begin{aligned}
A & =0,1,2,3,4,5 \\
\mu, \nu & =0,1,2,3
\end{aligned}
$$

Dirac equation in $N+1$ dimensions,
For a fermion interacting with a field Φ :

$$
i \partial_{A} \gamma^{A} \Psi=\underset{\cos m \Psi)}{\Phi}
$$

For ONE compact extra dim

$$
\begin{aligned}
& 0 \leqslant y \leqslant 2 \pi R \\
& \Psi\left(x^{\mu}, y\right)=\sum \Psi_{n}\left(x^{\mu}\right) e^{i \frac{n y}{2 \pi R}} \\
& i \partial_{\nu} \gamma^{\nu} \Psi_{n}\left(x^{\mu}\right) e^{i \frac{n y}{2 \pi R}}=\left(\frac{n}{2 \pi R} i \gamma_{5}+\Phi\right) \Psi_{n}\left(x^{\mu}\right) e^{i \frac{n y}{2 \pi R}} \\
& \rightarrow \text { lulu } 2 a \text { Leet } \text { tower } \\
& \bar{\equiv} \bar{\equiv}{ }^{2} n \\
& \text { J-M. Frère,Dec. dst, } 2010 \text { IIHE, Brussels }
\end{aligned}
$$

For 2 compact extra dim

$$
\begin{aligned}
& \Psi\left(x^{\mu}, x^{4}, x^{5}\right)=\sum_{n, l} \psi_{n, l}\left(x^{\mu}\right) f_{n, l}\left(x^{4}, x^{5}\right) \\
& \underbrace{i \partial_{\nu} \gamma^{\nu} \psi_{n, l}\left(x^{\mu}\right) f_{n, l}\left(x^{4}, x^{5}\right)}_{\text {4-cl }}=\psi_{n, l}\left(x^{\mu}\right)\left(\Phi-i \partial_{4} \gamma^{4}-i \partial_{5} \gamma^{5}\right) f_{n, l}\left(x^{4}, x^{5}\right) \\
& \text { Dincceq. } \gg \text { large chitin mas } \\
& \text { ReV } \rho=0 \rightarrow \text { zeno mole }
\end{aligned}
$$

Look for zero modes ...

Use of dimensional reduction obtain 3+1-dim chiral spinors : use of topological singularities in the extra dimensions to get zero modes,

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

For some reason, n=3 !!!

we assume a background scalar field Φ providing a vortex in the 2 extra dimensions;
It vanishes at the origin- where we live!

The 3 fermion modes have different shapes, and different winding properties in the extra dimension variable ϕ
Field Content

fields		profiles	charges		representations	
			$U(1)_{g}$	$U(1)_{Y}$	$S U(2)_{W}$	$S U(3)_{C}$
scalar	Φ	$\begin{array}{c} \\ \end{array}$	$F(r) \mathrm{e}^{i \theta}$			
$F(0)=0, F(\infty)=v_{\Phi}$						

Table 1: Scalars and fermions with their gauge quantum numbers. For convenience, we describe here also the profiles of the classical scalar fields and fermionic wave functions in extra dimensions.

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

We get a mass matrix like :

Generation number	Winding
$n=$	2
1	1
2	0
3	

An auxiliary scalar X, with winding $\mathrm{e}^{\mathrm{i} \mathrm{\phi}}$ can give the small Cabibbo mixings ε

The scheme is very constrained, as the profiles are dictated by the equations, instead of being imposed by hand, like in multilocalisation; Yet, several schemes possible ...

Neutrinos ARE different

In the same context (Oth order in Cabibbo mixing), we get indeed:

$$
M_{\nu} \sim\left(\begin{array}{ccc}
\cdot & \cdot & m \\
\cdot & \mu & \cdot \\
m & \cdot & \cdot
\end{array}\right)
$$

Where $m \gg$
After 45° 1-3 rotation and 23 permutation, this leads to an inverted hierarchy, (solar mass difference between the heavier

$$
M_{\nu} \sim\left(\begin{array}{ccc}
m & \cdot & \cdot \\
\cdot & -m & \cdot \\
\cdot & \cdot & \mu
\end{array}\right)
$$

The - sign may be absorbed in the mixing matrix, but contributes destructively to the effective mass for neutrinoless double beta decay (Pseudo-Dirac structure when full Cabibbo-like mixing is introduced)

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

WHY the difference?

jm frère, Spa , April 2011 in honour of Joseph Cugnon

WHY the difference? --- return in more detail to the 6D spinors, For the charged spinors, we have both L and R spinors bound to the vortex.

$$
\Psi=\left(\begin{array}{l}
\psi_{+R} \\
\psi_{+L} \\
\psi_{-L} \\
\psi_{-R}
\end{array}\right)
$$

$$
\text { Diner mass } \quad \bar{R} L=\sum_{n, n} \bar{R}_{n}, L_{n}
$$

Effective Lagrangian : integrate over r and φ,

For neutrinos (using only Majorana-type 4D mass term) we get

$$
L^{c} L \Rightarrow \sum_{n n},\left(\overline{L n}^{\prime}\right)^{c} L_{n}
$$

Numerical example

- With a good selection of Yukawa operators, we can get

$$
M_{\nu} \sim\left(\begin{array}{c}
\boldsymbol{x} \boldsymbol{x} \\
\mathbf{x} \cdots \\
\mathbf{x} \cdot
\end{array}\right)
$$

\rightarrow Possibility to have a bimaximal mixing

$$
\begin{gathered}
S_{+}=\Phi^{*}, X^{*}, X^{* 2} \Phi, \ldots \\
S_{-}=X^{2}, X \Phi, \Phi^{2}, \ldots \\
\tilde{Y}_{\nu}^{+}=y_{\nu}\{1,1.7\} \quad y_{\nu}=2.8 \cdot 10^{-2} \\
\tilde{Y}_{\nu}^{-}=y_{\nu} \quad M=1 / R=70 \mathrm{TeV}
\end{gathered}
$$

Numerical example

$$
M_{\nu}=\left(\begin{array}{ccc}
0 & 3.62 \cdot 10^{-2} & 3.50 \cdot 10^{-2} \\
3.62 \cdot 10^{-2} & 1.46 \cdot 10^{-3} & 0 \\
3.50 \cdot 10^{-2} & 0 & 0
\end{array}\right) \quad[\mathrm{eV}]
$$

$$
\begin{aligned}
& \begin{array}{l}
\Delta m_{21}^{2}=7.63 \times 10^{-5} \mathrm{eV}^{2} \\
\Delta m_{13}^{2}=2.50 \times 10^{-3} \mathrm{eV}^{2} \quad \longrightarrow \quad \Delta m_{21}^{2} / \Delta m_{13}^{2}=3.05 \%
\end{array} \\
& M_{l}=\left(\begin{array}{ccc}
4.21 \cdot 10^{-4} & 1.08 \cdot 10^{-3} & 0 \\
0 & 4.19 \cdot 10^{-3} & 5.98 \cdot 10^{-2} \\
0 & 0 & 1.71
\end{array}\right) \quad[\mathrm{GeV}] \\
& U_{l}^{\dagger} M_{l} V_{l}=D_{l}=\operatorname{diag}\left\{4.07 \cdot 10^{-4}, 4.33 \cdot 10^{-3}, 1.71\right\} \quad[\mathrm{GeV}]
\end{aligned}
$$

Semi-realistic example
(including extra winding introduced by scalar field combination,
like for the charged fermions):

Neutrino masses are: (INVERTED HIERARCHY)	-50.03 meV 50.79 meV 0.7089 meV
$U_{M N S}=\left(\begin{array}{ccc}0.808 & 0.555 & 0.196 \\ -0.286 & 0.662 & -0.693 \\ -0.514 & 0.504 & 0.694\end{array}\right)$	$\left\|\left\langle m_{\beta \beta}\right\rangle\right\|=17.0$ meV
(pseudo-Dirac suppression Approx 1/3)	

$$
\tan ^{2} \theta_{12}=0.471, \tan ^{2} \theta_{23}=0.997, \text { and } \sin ^{2} \theta_{13}=3.85 \cdot 10^{-2}
$$

Some other developments :

- compactification of the 2 extra dim on a sphere instead of a plane (avoid localisation of gauge bosons) - spinors modified, but conclusions kept (already mentioned) with extra scale 1/R
- phenomenological implications of the excited modes..
- constraint on B-E-H boson (Libanov and Nugaev: LIGHT)

$$
\theta
$$

The Majorana term can be traced to the «Majorana mass term » in the Lagrangian (not to be confused with a non-existant 6D Majorana spinor It leads to a contribution proportional to the effective propagator:
$M \overline{N c} N$

$$
\stackrel{N}{4 D} \sim \frac{M}{\ngtr-\left(\frac{2 \pi}{R}\right)^{2}-M^{2}}
$$

$$
\text { small } m \text { }{ }^{\longrightarrow} M>1 / R
$$

IMPORTANT : « family number » (n) is approximatively conserved! - $\mathrm{e}^{\mathrm{in} \phi}$ plays somewhat like a $\mathrm{U}(1)$ horizontal symmetry
2 extra dim : \rightarrow II gauge bosons, possess 2 types of Kaluza- Klein excitations

- radial $Z^{\prime}{ }_{0}$ (approx. flavour conserving) $\xrightarrow{\text { Almost the same couplings as } \mathrm{Z}}$

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

« family number» (n) is approximatively conserved! - somewhat like $\mathrm{U}(1)$ horizontal symmetry $\mathrm{e}^{\mathrm{i} \phi}$

Family number conserving J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

LIMITS

Typical limit

$$
\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{-} \mathrm{e}^{+} \text {or } \mu^{+} \mathrm{e}^{-} \quad \text { B.R. }<10^{-12}
$$

Expect thus typical mass scale $\mathrm{M}_{\mathrm{Z} 1} / \kappa>\left(10^{12}\right)^{1 / 4} \mathrm{M}_{\mathrm{Z}}=\kappa 100 \mathrm{TeV}$

In fact, the small overlap of wave functions implies
some suppression of the coupling; $\quad \kappa \ll 1$

$$
\rightarrow \text { bound becomes } \mathrm{M}\left(\mathrm{Z}_{1}\right)>\mathbb{\kappa} 100 \mathrm{TeV}
$$

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

We saturate the bound on κ

```
numbers for \(\mu^{-} \mathrm{e}^{+}\)
```

numbers for $\mu^{-} \mathrm{e}^{+}$

```
numbers for \(\mu^{-} \mathrm{e}^{+}\)
are ONE ORDER below
at LHC,due to quark
content of protons
```

Fig. 1. Number of events for $\left(\mu^{+} e^{-}\right)$pairs production as a function of the vector bosons mass M, with $\kappa=M /(100 \mathrm{TeV})$. (also s left in underlying event)

See.JETP Lett.79:598-601,2004, Pisma Zh.Eksp.Teor.Fiz.79:734-737,2004. JMF, M Libanov, S Troitsky, E Nugaev hep-ph/0404139

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

LHC thus has the potential (in a specific model, of course) to beat even the very sensitive fixed-target $\mathrm{K} \rightarrow \mu \mathrm{e}$ limit!

$\overline{\mathrm{t}}+\mathrm{C}$ or $\overline{\mathrm{b}}+\mathrm{s}$ are similarly produced by the gluon excitations,
 Expect a few 1000's events --- but must consider background!

From now on

for later ...

$$
\begin{aligned}
\mathrm{M}\left(\mathrm{Z}_{0}^{\prime}\right)= & \mathrm{M}\left(\mathrm{Z}^{\prime} \pm\right)>\kappa 100 \mathrm{TeV} \\
& \kappa 0.01 \ldots 0.3
\end{aligned}
$$

Find the $Z^{\prime} \pm$, к suppressed

Fig. 1. Number of events for $\left(\mu^{+} e^{-}\right)$pairs production as a function of the vector bosons mass M, with $\kappa=M /(100 \mathrm{TeV})$.
$\left(100 \mathrm{fb}^{-1}, 14 \mathrm{TeV}\right)$

In a nutshell:

- One family in 6D and proper boundary conditions $\rightarrow 3$ families in 6D
-At lowest order in Cabibbo mixing, Charged fermion masses are
diagonal
strongly hierarchical
At LHC, this can result in exotic signals $\left(Z^{\prime} \rightarrow \mu^{+} \mathrm{e}^{-} \gg \mu^{-} \mathrm{e}^{+}\right)$
-At same order, we get 4D Majorana neutrinos with
Antidiagonal mass matrix
-This yields, in a generic way:
Large mixings in the neutrino sector
Inverted Hierarchy
Pseudo- Dirac structure (further suppression of neutrinoless double beta decay)
- Not as automatic, but typical : measurable Θ_{13}

Some kinematical details

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

3 FAMILIES IN 4D FROM 1 FAMILY IN 6D

- Vortex in 6D
$U(1)_{g}$ gauge field $A+$ background scalar field Φ

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels

AbIKOSOV-NIELSEN-OlESEN VORTEX

- A vortex on a sphere is in fact like a magnetic monopole configuration in 3D

J-M. Frère,Dec. 1st, 2010 IIHE, Brussels
$\underset{\text { interactions }}{C}$

