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Forms of Relativistic Dynamics

The Poincaré Group

The generators of the Poincaré group are

Pµ space-time translations,

Mµν pure Lorentz transformations.
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The generators satisfy the commutation relations

[Pµ, P ν ] = 0 ,

[Mµν , Pα] = i (Pµ gνα − P ν gµα) ,[
Mµν ,Mαβ

]
= i
(
gµβMνα − gνβMµα + gναMµβ − gµαMνβ

)
,

which determine the Lie algebra of the Poincaré group.
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The irreducible representations of the Poincaré group are
characterized by the invariants:
the mass

Pµ Pµ = m2 ,

the intrinsic spin
WµWµ = −m2S2

which is determined by the Pauli-Lubanski pseudovector

Wµ = −1

2
εµναβPνSαβ
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Forms of Relativistic Dynamics

In the pioneering paper
Forms of Relativistic Dynamics,
Reviews of Modern Physics 21 (1949) 392-399

P.A.M. Dirac stated:

• Invariance under generally covariant transformations.

• The equations of motion shall be expressible in the
Hamiltonian form.
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The evolution of a system with nonrelativistic dynamics can be
completely determined by the Hamiltonian
using the evolution operator.

U(t) = exp(−iHt) .

The state specification at the surface t = 0, an instant in time,
represents the initial conditions.

For the Galilei group the instant is the only appropriate initial
surface.
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For relativistic systems any hypersurface Σ in Minkowski-space
that does not contain timelike directions can be used to formu-
late the initial conditions.

Here is very useful the concept of the stability group :

GΣ : Σ→ Σ .

The generators of GΣ are called kinematical operators.

The rest of the generators map Σ into another surface Σ→ Σ′.
They are said to be dynamical operators.
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If the surface Σ has the property

(∀x ∈ Σ) ∧ (∀y ∈ Σ) : ∃g ∈ GΣ → gx = y ,

then it is said that the group GΣ acts transitively and all points
points in Σ are equivalent.
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If we limit ourselves to consider only transitive actions of GΣ on
Σ, there exist just five inequivalent possibilities, corresponding
to the five subgroups of the Poincaré group.

Instant Form x0 = 0 ,

Light- Front Form x0 + x3 = 0 ,

Point Form x2 = a2 > 0, x0 > 0 .

Dirac

(x0)2 − (x1)2 − (x2)2 = a2 > 0, x0 > 0 ,

(x0)2 − (x3)2 = a2 > 0, x0 > 0 .

Leutwyler and Stern
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Comparison of Instant Form, Front Form, and Point Form

Instant Form Front Form Point Form

Quantization Surface

x0 = 0 x0 + x3 = 0 x2 = a2 > 0, x0 > 0

Measure∫ d3p
2 p0

∫ d2p⊥dp+

2 p+

∫
d3u
2 g0
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Instant Form Front Form Point Form

Kinematical Generators

P P+ ,P⊥ Mµν

J E1 = M+1 =
Kx+Jy√

2

E2 = M+2 =
Ky−Jx√

2

Jz = M12

Kz = M−+
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Instant Form Front Form Point Form

Dynamical Generators

P 0 P− Pµ

K F 1 = M−1 =
Kx−Jy√

2

F 2 = M−2 =
Ky+Jx√

2
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Instant form of the homogeneous
SU(2) Yang-Mills theory

The dynamics of the SU(2) Yang-Mills 1-form A in 4-dimensional
Minkowski space-time M4 is governed by the conventional local
functional

SYM =
1

2

∫
M4

trF ∧ ∗F

defined in terms of the curvature 2-form F = dA + gA ∧A

After the supposition of the spatial homogeneity of the connec-
tion A

L∂iA = 0 ,

the action reduces to the action for a finite dimensional model
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described by the degenerate matrix Lagrangian

LYMM =
1

2
tr
(
(DtA)(DtA)T

)
− V (A) ,

where

A := Yaeadt+Aaieadx
i , Ya := Aa0 , Aai := Aai ,

(DtA)ai = Ȧai + gεabcYbAci

The part of the Lagrangian corresponding to the self-interaction
of the gauge fields is gathered in the potential V (A)

V (A) =
g2

4

(
tr2(AAT )− tr(AAT )2

)
To express the Yang-Mills mechanics in a Hamiltonian form,
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let us define the phase space endowed with the canonical sym-
plectic structure and spanned by the canonical variables

(Ya, PYa ;Aai, Eai) ,

where

PYa =
∂L

∂Ẏa
= 0 , Eai =

∂L

∂Ȧai
= Ȧai + gεabcYbAci

According to these definitions of the canonical momenta, the
phase space is restricted by the three primary constraints

PYa = 0

and thus evolution of the system is governed by the total Hamil-
tonian

HT = HC + uYa(t)PYa ,
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where the canonical Hamiltonian is given by

HC =
1

2
tr(EET ) +

g2

4

(
tr2(AAT )− tr(AAT )2

)
+ gYa tr(JaAE

T )

The conservation of the primary constraints in time entails the
further condition on the canonical variables

Φa = g tr(JaAE
T ) = 0

They are the first class constraints obeying the Poisson brackets
algebra

{Φa,Φb} = g εabcΦc

In order to project onto the reduced phase space, we use the
polar decomposition for an arbitrary 3× 3 matrix

Aai(φ,Q) = Oak(φ)Qki
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The field strength Eai in terms of the new canonical pairs
(Qik, Pik) and (φi, Pi) is

Eai = Oak(φ)

(
Pki + εkil(γ

−1)lj
(
ξLj − Sj

))
,

where ξLa are three left-invariant vector fields on SO(3)

ξL1 =
sinφ3

sinφ2
P1 + cosφ3 P2 − cotφ2 sinφ3 P3 ,

ξL2 =
cosφ3

sinφ2
P1 − sinφ3 P2 − cotφ2 cosφ3 P3 ,

ξL3 = P3

Vector Sj = εjmn(QP )mn is the spin vector of the gauge field
and γik = Qik − δik trQ .
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Reformulation of the theory in terms of these variables allows
one to easily achieve the Abelianization of the secondary Gauss
law constraints

Φa = Mab Pb = 0

Assuming nondegenerate character of the matrix

M =


sinφ1
sinφ2

, cosφ1 , − sinφ1 cotφ2

− cosφ1
sinφ2

, sinφ1 , cosφ1 cotφ2

0 , 0 , 1


we find the set of Abelian constraints equivalent to the Gauss

law

Pa = 0
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The resulting unconstrained Hamiltonian, defined as a projec-
tion of the total Hamiltonian onto the constraint shell

HYMM (Qab , Pab) := HC

∣∣∣
Pa=0 , PYa=0

can be written in terms of Qab and Pab as

HYMM =
1

2
trP 2 − 1

det2 γ
tr (γMγ)2 +

g2

4

(
tr2Q2 − trQ4

)
,

where Mmn = (QP −PQ)mn denotes the gauge field spin tensor.

To write down the Hamiltonian describing the motion on the
principal orbit stratum we decompose the nondegenerate sym-
metric matrix Q as

Q = RT (χ1, χ2, χ3)D R(χ1, χ2, χ3)
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with the SO(3) matrix R parameterized by the three Euler an-
gles χi := (χ1, χ2, χ3) and the diagonal matrix D = diag (x1, x2, x3).
The Jacobian of this transformation is the relative volume of
orbits

J :=

∣∣∣∣ det

∣∣∣∣∣∣∣∣ ∂Q∂xk , ∂Q∂χk
∣∣∣∣∣∣∣∣ ∣∣∣∣ =

∏
i<k

| xi − xk |

and it is regular for the Principal stratum x1 < x2 < x3.

The original physical momenta Pik can then be expressed in
terms of the new canonical pairs (xi, pi) and (χi, pχi) as

P = RT
(

3∑
s=1

P̄s αs +

3∑
s=1

Ps αs

)
R
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with P̄s = ps,

Pi = −1

2

ξRi
xj − xk

, (cyclic permutation i 6= j 6= k) ,

where ξR are SO(3,R) right-invariant Killing vectors. In terms
of these variables the physical Hamiltonian reads

HYMM =
1

2

3∑
a=1

p2
a +

1

4

3∑
a=1

k2
aξ

2
a + V (3)(x) ,

where

k2
a =

1

(xb + xc)2
+

1

(xb − xc)2
, cyclic a 6= b 6= c
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and

V (3) =
g2

2

∑
a<b

x2
ax

2
b

The potential V (3)(x1, x2, x3) can be rewritten as

V (3)(x1, x2, x3) =
∂W (3)

∂xa

∂W (3)

∂xa
, a = 1, 2, 3

with the superpotential W (3) = x1x2x3.
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Hence the YMM can be represented as the following Matrix
model

LYMM =
1

2
trȦȦT +

g2

4

(
tr2(AAT )− tr(AAT )2

)
restricted on the invariant submanifold ηR = 0.



	 ´ J 26/78 I ¹ �

	 	

Reduction to Yang-Mills mechanics via the
discrete symmetry

The Hamiltonian of the system defined as

H =
1

2
trP 2 + V (N)(X)

describes a motion on the matrix configuration space and dif-
fers from the considered in preceding section by the inclusion of
the external potential V (X). We specify the external potential
V in superpotential form

V (N) = −1

4
tr

(
∂W (N)

∂X

)2
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with superpotential W (N) given as

W (N) = i
√

detX

After passing to the new variables one can convince that the
Hamiltonian coincides with the Euler-Calogero-Moser Hamil-
tonian embedded in external potential

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i 6=j

l2ij
(xi − xj)2

+ V (N)(x1, x2, . . . , xN )

For the description of discrete symmetries of the Hamiltonian
it is convenient to use the Cartesian form of “angular variables”
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lab = yaπb − ybπa

with canonically conjugated variables ya, πa.

One can easily check that the Hamiltonian possesses the follow-
ing discrete symmetries
(A. Polychronakos, Nucl. Phys B 543 (1999) 485 ):

• Parity P  xi

pi

 7→
−xi
−pi

 ,

 yi

πi

 7→
−yi
−πi


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• Permutation symmetry M
(M is the element of the permutation group SN)

 xi

pi

 7→
 xM(i)

pM(i)

 ,

 yi

πi

 7→
 yM(i)

πM(i)



Let us consider the certain invariant submanifold of the phase
space of the matrix model and find out the corresponding re-
duced system. One can verify that the submanifold defined by
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the constraints

χa :=
1√
2

(xa + xN−a+1) , χ̄a :=
1√
2

(ya + yN−a+1) ,

Πa :=
1√
2

(pa + pN−a+1) , Π̄a :=
1√
2

(πa + πN−a+1)

is the invariant submanifold of the system. Because the Hamil-
tonian possesses the discrete symmetry mentioned above this
manifold is invariant under the action

D = P ×M ,

where M is specified as M(a) = N − a + 1 . The nonvanishing
Poisson brackets are

{χa,Πb} = δab , {χ̄a, Π̄b} = δab
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One can easy verify that for canonical constraints the corre-
sponding fundamental Dirac brackets are

{xa, pb}D =
1

2
δab , {ya, πb}D =

1

2
δab

As result the system with Hamiltonian reduces to the following
one

Hred =
1

2

N
2∑

a=1

p2
a +

1

2

N
2∑
a6=b

l2abk
2
ab +

g2

2

N
2∑
a6=b

x2
ax

2
b ,

where

k2
ab =

1

(xa + xb)2
+

1

(xa − xb)2

Expression for N = 6 coincides with the Hamiltonian of the
SU(2) Yang-Mills mechanics.
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Lax pair for Yang-Mills mechanics in zero
coupling limit

The introduction of Dirac brackets allows one to use the Lax
pair of higher dimensional Euler-Calogero-Moser model (namely
A6) for the construction of Lax pairs (LYMM , AYMM) of free
Yang-Mills mechanics by performing the projection onto the
constraint shell

LECM6×6 |CS = LYMM , AECM6×6 |CS = AYMM .

The explicit form of the Lax pair matrices for the free SU(2)
Yang-Mills mechanics is given by the following 6× 6 matrices
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LYMM =



p1 − l12
x1−x2 −

l13
x1−x3

l13
x1+x3

l12
x1+x2

0

− l12
x1−x2 p2 − l23

x2−x3
l23

x2+x3
0 − l12

x1+x2

− l13
x1−x3 −

l23
x2−x3 p3 0 − l23

x2+x3
− l13
x1+x3

l13
x1+x3

l23
x1+x2

0 −p3 − l23
x2−x3 −

l13
x1−x3

l12
x1+x2

0 − l23
x2+x3

− l23
x2−x3 −p2 − l12

x1−x2

0 − l12
x1+x2

− l13
x1+x3

− l13
x1−x3 −

l12
x1−x2 −p1


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AYMM =



0 l12
(x1−x2)2

l13
(x1−x3)2

− l13
(x1+x3)2

− l12
(x1+x2)2

0

− l12
(x1−x2)2

0 l23
(x2−x3)2

− l23
(x2+x3)2

0 l12
(x1+x2)2

− l13
(x1−x3)2

− l23
(x2−x3)2

0 0 l23
(x2+x3)2

l13
(x1+x3)2

l13
(x1+x3)2

l23
(x1+x2)2

0 0 − l23
(x2−x3)2

− l13
(x1−x3)2

l12
(x1+x2)2

0 − l23
(x2+x3)2

l23
(x2−x3)2

0 − l12
(x1−x2)2

0 − l12
(x1+x2)2

− l13
(x1+x3)2

l13
(x1−x3)2

l12
(x1−x2)2

0





	 ´ J 35/78 I ¹ �

	 	

The equations in the zero coupling constant limit read in a Lax
form as

L̇YMM = [AYMM , LYMM ] , l̇YMM = [AYMM , lYMM ] ,

where the matrix lYMM is
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lYMM =



0 l12 l13 −l13 −l12 0

−l12 0 l23 −l23 0 l12

−l13 −l23 0 0 l23 l13

l13 l23 0 0 −l23 −l13

l12 0 −l23 l23 0 −l12

0 −l12 −l13 l13 l12 0


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Light-cone form of the homogeneous
SU(2) Yang-Mills theory

Light-cone model and analysis of constraints

We start with the action of Yang-Mills field theory in four-
dimensional Minkowski space M4, endowed with a metric η and
represented in the coordinate free form

I :=
1

g2

∫
M4

trF ∧ ∗F ,
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where g is a coupling constant and the su(2) algebra valued
curvature two-form

F := dA+A ∧A

is constructed from the connection one-form A. The connection
and curvature, as Lie algebra valued quantities, are expressed
in terms of the antihermitian su(2) algebra basis τa = σa/2i with
the Pauli matrices σa , a = 1, 2, 3,

A = Aa τa , F = F a τa .

The metric η enters the action through the dual field strength
tensor defined in accordance with the Hodge star operation

∗Fµν =
1

2

√
η εµναβ F

αβ .
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To formulate the light-cone version of the theory let us intro-
duce the basis vectors in the tangent space TP (M4)

e± :=
1√
2

(e0 ± e3) , e⊥ := (ek , k = 1, 2) .

The first two vectors are tangent to the light-cone and the
corresponding coordinates are referred usually as the light-cone
coordinates xµ =

(
x+, x−, x⊥

)
x± :=

1√
2

(
x0 ± x3

)
, x⊥ := xk , k = 1, 2 .

The non-zero components of the metric η in the light-cone basis
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(e+, e−, ek) are

η+− = η−+ = −η11 = −η22 = 1 .

The connection one-form in the light-cone basis is given as

A = A+ dx
+ +A− dx

− +Ak dx
k .

By definition the Lagrangian of light-cone Yang-Mills mechanics
follows from the corresponding Lagrangian of Yang-Mills theory
if one supposes that the components of the connection one-form
A depends on the light-cone “time variable” x+ alone

A± = A±(x+) , Ak = Ak(x
+) .
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Substitution this ansatz into the classical action defines the
Lagrangian of light-cone Yang-Mills mechanics

L =
1

2g2

(
F a+− F

a
+− + 2F a+k F

a
−k − F a12 F

a
12

)
,

where the light-cone components of the field-strength tensor
are given by

F a+− =
∂Aa−
∂x+

+ εabcAb+A
c
− ,

F a+k =
∂Aak
∂x+

+ εabcAb+A
c
k ,

F a−k = εabcAb−A
c
k ,

F aij = εabcAbi A
c
j , i, j, k = 1, 2 .
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Performing the Legendre transformation

π+
a =

∂L

∂Ȧa+
= 0 ,

π−a =
∂L

∂Ȧa−
=

1

g2

(
Ȧa− + εabcAb+A

c
−

)
,

πka =
∂L

∂Ȧak
=

1

g2
εabcAb−A

c
k ,

we obtain the canonical Hamiltonian

HC =
g2

2
π−a π

−
a − εabcAb+

(
Ac− π

−
a +Ack π

k
a

)
+ V (Ak)
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with a potential term

V (Ak) =
1

2g2

[(
Ab1A

b
1

)
(Ac2A

c
2)−

(
Ab1A

b
2

)
(Ac1A

c
2)
]
.

The non-vanishing Poisson brackets between the fundamental
canonical variables are

{Aa± , π±b } = δab ,

{Aak , πlb} = δlkδ
a
b .

The Hessian of the Lagrangian system (??) is degenerate, det || ∂2L
∂Ȧ∂Ȧ

|| =
0, and as a result there are primary constraints

ϕ(1)
a := π+

a = 0 ,

χak := g2 πak + εabcAb−A
c
k = 0 ,
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satisfying the following Poisson brackets relations

{ϕ(1)
a , ϕ

(1)
b } = 0 ,

{ϕ(1)
a , χbk} = 0 ,

{χai , χbj} = −2 g2εabcAc− ηij .

According to the Dirac prescription, the presence of primary
constraints affects the dynamics of the degenerate system. Now
the generic evolution is governed by the total Hamiltonian

HT = HC + Ua(τ)ϕ(1)
a + V a

k (τ)χak ,

where Ua(τ) and V a
k (τ) are unspecified functions of the light-
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cone time τ . Using this Hamiltonian the dynamical self-consistence
of the primary constraints may be checked. From the require-

ment of conservation of the primary constraints ϕ
(1)
a it follows

0 = ϕ̇(1)
a = {π+

a , HT } = εabc
(
Ab−π

−
c +Abkπ

k
c

)
.

Therefore there are three secondary constraints ϕ
(2)
a

ϕ(2)
a := εabc

(
Ab−π

−
c +Abkπ

k
c

)
= 0 ,

which obey the so(3,R) algebra

{ϕ(2)
a , ϕ

(2)
b } = εabc ϕ

(2)
c .
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The same procedure for the primary constraints χak gives the
following self-consistency conditions

0 = χ̇ak = {χak , HC} − 2 g2 εabc V b
k A

c
− .

Hereinafter we shall consider the subspace of configuration space
where rank||C|| = 2. For those configurations we are able to in-
troduce the unit vector

Na =
Aa−√

(A1
−)2 + (A2

−)2 + (A3
−)2

,

which is a null vector of the matrix ‖ εabcAc− ‖, and to decompose
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the set of six primary constraints χak as

ψk := Naχak ,

χak⊥ := χak −
(
N bχbk

)
Na .

In this decomposition the first two constraints ψk are function-
ally independent and satisfy the Abelian algebra

{ψi , ψj} = 0 ,

while the constraints χak⊥ are functionally dependent due to
the conditions

Na χak⊥ = 0 .

Choosing among them any four independent constraints we
can determine four Lagrange multipliers V k

b⊥.
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The Poisson brackets of the constraints ψk and ϕ
(2)
a with the

total Hamiltonian vanish after projection on the constraint sur-

face (CS) defined by equations ψk = 0 and ϕ
(2)
a = 0

{ψk , HT } |CS = 0 ,

{ϕ(2)
a , HT } |CS = 0

and thus there are no ternary constraints.
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Summarizing, we arrive at the set of constraints ϕ
(1)
a , ψk, ϕ

(2)
a , χbk⊥.

The Poisson brackets algebra of the first three is

{ϕ(1)
a , ϕ(1)

a } = 0 ,

{ψi , ψj} = 0 ,

{ϕ(2)
a , ϕ

(2)
b } = εabc ϕ

(2)
c ,

{ϕ(1)
a , ψk} = {ϕ(1)

a , ϕ
(2)
b } = {ψk , ϕ(2)

a } = 0 .

The constraints χbk⊥ satisfy the relations

{χai⊥ , χbj⊥} = −2 g2 εabcAc− ηij ,

and the Poisson brackets between these two sets of constraints
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are

{ϕ(2)
a , χbk⊥} = εabc χck⊥ ,

{ϕ(1)
a , χbk⊥} = {ψi , χbj⊥} = 0 .

Unconstrained version of light-cone mechanics

Let us organize the configuration variables Aai and Aa− in one
3 × 3 matrix Aab whose entries of the first two columns are Aai
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and third column is composed by the elements Aa−

Aab := ‖Aa1 , Aa2 , Aa−‖ ,

and the momentum variables similarly

Πab := ‖πa1 , πa2 , πa−‖.

In order to find an explicit parametrization of the orbits with
respect to the gauge symmetry action, it is convenient to use a
polar decomposition [?] for the matrix Aab

A = OS ,

where S is a positive definite 3×3 symmetric matrix, O(φ1, φ2, φ3) =
eφ1J3eφ2J1eφ3J3 is an orthogonal matrix parameterized by the three
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Euler angles (φ1, φ2, φ3). The matrices (Ja)ij = εiaj are the SO(3,R)
generators in adjoint representation.

It is in order to make a few remarks on the change of vari-
ables. It is well-known that the polar decomposition is valid for
an arbitrary matrix. However, the orthogonal matrix uniquely
determined only for an invertible matrix A

O = AS−1 , S =
√
AAT .

It is worth to note here that in virtue of the constraints the
determinant of the matrix A is related to the third component
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of the gauge field spin

2 detA− g2ε3ik A
a
k π

a
i = 0 .

The polar decomposition induces the point canonical transfor-
mation from the coordinates Aab and Πab to new canonical pairs
(Sab, Pab) and (φa, Pa) with the following non-vanishing Poisson
brackets

{Sab , Pcd} =
1

2
(δac δbd + δad δbc) ,

{φa , Pb} = δab .

The expression of the old Πab as a function of the new coordi-
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nates is
Π = O (P − kaJa) ,

where
ka = γ−1

ab

(
ηLb − εbmn (SP )mn

)
,

γik = Sik− δik trS and ηLa are three left-invariant vector fields on
the SO(3,R) group

ηL1 =
sinφ3

sinφ2
P1 + cosφ3 P2 − cotφ2 sinφ3 P3 ,

ηL2 =
cosφ3

sinφ2
P1 − sinφ3 P2 − cotφ2 cosφ3 P3 ,

ηL3 = P3 .
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In terms of the new variables the constraints take the form

ϕ(2)
a = Oab η

L
b ,

χam = Oab (Pbm + εbmc kc + εbij Si3 Sjm) .

Thus one can pass to the equivalent set of constraints

ηLa = 0 ,

χ̃ai = Pai + εaij γ
−1
jk εkmn(SP )mn + εamn Sm3 Sni = 0

with vanishing Poisson brackets

{ηLa , χ̃bi} = 0 .
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In order to proceed further in resolution of the remaining con-
straints we introduce the main-axes decomposition for the sym-
metric 3× 3 matrix S

S = RT (χ1, χ2, χ3)


q1 0 0

0 q2 0

0 0 q3

R(χ1, χ2, χ3) ,

with orthogonal matrix R(χ1, χ2, χ3) = eχ1J3eχ2J1eχ3J3, parame-
terized by three Euler angles (χ1, χ2, χ3). The Jacobian of this
transformation is

∂( Si<j )

∂(qa, χb)
∼

3∏
a6=b
| qa − qb | .
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The momenta pa and pχa, canonically conjugated to the diagonal
qa and angular variables χa, can be found using the canonical
invariance of the symplectic one-form

3∑
a,b=1

Pab dSab =

3∑
a=1

pa dqa +

3∑
a=1

pχa dχa .

The original momenta Pab, expressed in terms of the new canon-
ical variables, read

P = RT
3∑

a=1

(pa αa + Pa αa)R .
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Here αa and αa denote the diagonal and off-diagonal basis el-
ements of the space of symmetric matrices with orthogonality
relations

tr (αaαb) = δab , tr (αaαb) = 2δab , tr (αaαb) = 0

and

Pa = −1

2

ξRa
qb − qc

(cyclic permutations a 6= b 6= c) .

The ξRa are three SO(3,R) right-invariant vector fields given in
terms of the angles χa and their conjugated momenta pχa via

ξRa = M−1
ba pχb

,
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where the matrix M is given by

Mab = −1

2
tr

(
Ja
∂R

∂χb
RT
)
.

The explicit form of the three SO(3,R) right-invariant Killing
vector fields is

ξR1 = − sinχ1 cotχ2 pχ1 + cosχ1 pχ2 +
sinχ1

sinχ2
pχ3 ,

ξR2 = cosχ1 cotχ2 pχ1 + sinχ1 pχ2 −
cosχ1

sinχ2
pχ3 ,

ξR3 = pχ1 .

Using these formulas the constraints χ̃ may be rewritten in
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terms of the main-axes variables as

χ̃ =

3∑
a=1

RT
[
πa αa −

1

2
ρ−a αa +

1

2
ρ+
a Ja

]
R ,

where

ρ±a =
ξRa

qb ± qc
± 1

g2
qana(qb ± qc) ,

and na = Ra3.

Note that the constraint on the determinant of the matrix A
now takes the form

2 q1 q2 q3 − g2ξL3 = 0 ,
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where ξL3 is the third left-invariant Killing vector field, ξLa =
Rab ξ

R
b

ξL1 =
sinχ3

sinχ2
pχ1 + cosχ3 pχ2 − cotχ2 sinχ3 pχ3 ,

ξL2 =
cosχ3

sinχ2
pχ1 − sinχ3 pχ2 − cotχ2 cosχ3 pχ3 ,

ξL3 = pχ3 .

The expression for the Abelian constraints ψi dictates the ap-
propriate gauge fixing condition

ψi := NaAai = 0 ,
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which is the canonical one in the sense that

{ψi, ψj} = δij .

The constraints ψi = 0 rewritten in terms of the main-axes
variables may be identified with the nullity of the momenta

pχ1 = 0 , pχ2 = 0 ,

while the canonical gauge-fixing condition fixes the correspond-
ing angular variables χ1 and χ2

χ1 =
π

2
, χ2 =

π

2
.
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Projection of the canonical Hamiltonian to the surface described
by constraints gives

HLC := HC(χ1 =
π

2
, pχ1 = 0 , χ2 =

π

2
, pχ2 = 0) =

g2

2

(
p2

1 +
q2

2 q
2
3

g4

)
.

Furthermore, taking into account the constraint the projected
Hamiltonian may be rewritten as

HLC

∣∣∣∣
2 q1 q2 q3−g2ξL3 =0

=
g2

2

(
p2

1 +

(
ξL3
2q1

)2
)
.

It may be checked that the constraints χai ⊥ lead to the con-
ditions on the “diagonal” canonical pairs (qi , pi). Namely, the
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canonical momenta p2 and p3 are vanishing

p2 = 0 , p3 = 0 ,

while the corresponding coordinates q2 and q3 are subject to
the constraint

q2
2 + q2

3 = 0

as well the constraint.

Let us consider the analytic continuation of the constraint into
a complex domain and explore its complex solution

q2 = ± i q3 .
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Expressing q3 from equation

q3 =
1∓ i

2

√
g2ξL3
q1

,

we find that (q1, p1) and (χ3, pχ3) remain real unconstrained vari-
ables whose Dirac brackets are the canonical ones

{q1, p1}D = 1 , {χ3, pχ2}D = 1 .

Therefore the dynamics of the unconstrained pairs (q1, p1) and
(χ3, pχ3) is given by the standard Hamilton equations with the
Hamiltonian. Remarking that the ξL3 is conserved we conclude
that coincides with the Hamiltonian of conformal mechanics

H =
g2

2

(
p2

1 +
κ2

q2
1

)
,
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with “coupling constant” κ2 =
(
ξL3 /2

)2
determined by the value

of the gauge spin, while the gauge field coupling constant g
controls the scale for the evolution parameter.

The dynamical SL(2, R) symmetry

The action for conformal mechanics

S :=
1

2

∫
dt

(
q̇2 − κ

q2

)
,
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is invariant under the three parameters time reparametrization

t→ t′ :=
αt+ β

γt+ δ
, αδ − βγ = 1 ,

accompanied with following transformation of independent vari-
able

q′(t′) :=
1

γt+ δ
q(t) .

These transformation represent the conformal transformations
in 0+1 dimensions and can be build with the aid of the explicitly
time dependent Noether generators

H :=
1

2

(
p2 +

κ

q2

)
, D := tH − 1

2
qp , K := t2H − t qp+

1

2
q2 ,
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which obey the SL(2, R) algebra with respect to the Poisson
brackets

{H ,K} = 2D , {H ,D} = H , {K ,D} = −K .

The generators H,D and K correspond to the time translations,
dilations and special conformal transformations

t→ t+ β , t→ α2t , t→ 1

γt+ 1
.

respectively.

On the other hand the classical action of pure 4-dimensional
Yang-Mills theory in the Minkowski space-time is invariant un-
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der the conformal transformations

x′
µ

= xµ + ξµ ,

A′µ(x) = Aµ(x) + δξAµ ,

where the vector ξ satisfies the conformal Killing equation

∂µξν + ∂νξµ =
1

2
gµν∂σξ

σ ,

and the infinitesimal change δξAµ is given by the Lie derivative
£ξ of a gauge potential

δξAµ = £ξA
a
µ = ∂µξ

νAaν + ξν∂νA
a
µ ,

For the standard cartesian Minkowski metric tensor g = (1,−1,−1,−1)
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the general solution to the equation reads:

ξµ := aµ + bxµ + ωµνx
ν + 2xµcνx

ν − cµxνxν ,

where aµ, b , cµ and ωµν = −ωνµ are 15 independent parameters.

Now we construct integrals of motion for the light-cone me-
chanics that are inherited from the conformal symmetry of the
underlining field theory.

The conserved symmetric traceless energy momentum tensor
gives rise to the differential conservation law

∂µ (ξνTµ
ν) = 0

Supposing now the dependence of fields on light-cone time only
the charges corresponding to the conformal group symmetry
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can be defined as follows. The identity

0 =

∫
dx−dx2

⊥∂µ (ξνTµ
ν) =

∫
dx−dx2

⊥∂+

(
ξνT+

ν

)
+
∑
α=−, i

Tα
ν

∫
dx−dx2

⊥∂αξ
ν

after integration gives

∂

∂τ

(∫
dx−dx2

⊥ ξ
νT+

ν

)
=
(
T−νω

ν
− + T−+c

+ + T−ic
i
)
×Vol

where Vol :=
∫

dx−dx2
⊥ denotes a 3-dimensional volume.

Therefore if the vector ξ is specified as

ξ+ = a+ + bτ + 2cτ2 ,

ξ− = a− ,

ξi = ai .
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the right hand side of the equation vanishes and we arrive at
the following integrals of motion

I(τ) = aνT+
ν + bτT+

+ + c+τ
2T+

+ ,

Now having these in mind consider three functions T+ , T0 , and
T− defined on the phase space of our model

T+ = 1
2

(
π−a π

−
a + π+

a π
+
a + πai π

i
a

)
,

T0 = −1
2

(
Aa−π

−
a +Aa+π

+
a +Aai π

i
a

)
,

T− = 1
2

(
Aa−A

a
− +Aa+A

a
+ +AiaA

a
i

)
.
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Note that these functions obey the SL(2, R) algebra and can be
rewritten as Indeed, noting that

T+ = Hc + πiaχ
i
a +Aa+ϕ

(2)
a

With the aid of these functions one can construct three integrals
of motion as follows. Straightforward calculation shows that the
function

I = 2f(τ)T+ + ḟ(τ)T0 + f̈(τ)T−

with quadratic function f(τ) of light-cone time

f(τ) = a+ bτ + cτ2 , a, b, c − constants ,
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represents the 3-parameter integral of motion. I one can verify
that the total derivative

dI

dτ
=
∂I

∂τ
+ {I ,HT } .

vanishes on the primary constraint surface.

This integral of motion generates the rigid 3-parameter in-
finitesimal symmetry transformation A′(τ) = A(τ) + δfA(τ)

δfA
a
+(τ) = f(τ)Ȧa+ + ḟ(τ)A+ ,

δfA
a
−(τ) = f(τ)Ȧa− ,

δfA
a
i (τ) = f(τ)Ȧai
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induced by the infinitesimal time reparameterization

τ ′ = τ + f(τ) .

Therefore we conclude that the dynamical algebra of light-cone
Yang-Mills mechanics include the SL(2, R) algebra.

In order to clarify the meaning of the 5- parameter gauge sym-
metry group, let us define 4-vector ξ = (ξ+ , ξ− , ξi) , whose ±
components coincide with the function f the transverse com-
ponents of which are two arbitrary functions of light-cone time
ξi(τ) , i = 1, 2

ξ =
(
f(τ) , f(τ) , ξi(τ)

)
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One can convince that the change of the dynamical variables
represented by the action of Lie derivative with respect vector
field ξ

δξA
a
µ = £ξA

a
µ = ∂µξ

νAaν + ξν∂νA
a
µ

is a combination of rigid SL(2, R) transformations and Abelian
subgroup of gauge transformation defined by the εa(τ) = 0 with
υi = ξ̇i.

Concluding remarks
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