Spatially Homogeneous Yang-Mills Theory:
Instant, Light-Front and Point Forms of
Dynamics

Arsen Khvedelidze® and Dimitar Mladenov®

@ Laboratory of Information Technologies, Joint Institute for Nuclear

Research, Dubna, Russia

b Theoretical Physics Department, Faculty of Physics, Sofia University,
Sofia, Bulgaria

ICP In Memoriam Acad. Prof. Matey Mateev,
Sofia University ”St. Kliment Ohridski”, Sofia, Bulgaria
April 10-12, 2011

® 1/78 > >



Contents of the Talk

o Forms of Relativistic Dynamics

e Instant Form of the Homogeneous
Yang-Mills Theory

e Light-Front Form of the Homogeneous
Yang-Mills Theory

e Point Form of the Homogeneous
Yang-Mills Theory

4 < 2/78 > >l



Forms of Relativistic Dynamics

The Poincaré Group

The generators of the Poincaré group are

e space-time translations,
M"  pure Lorentz transformations.
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The generators satisfy the commutation relations

[
B (P - P
|:M/W , Maﬁ] = <guﬂ Mre gV5 Mre SO MHB _ ghe MVB) ]

which determine the Lie algebra of the Poincaré group.
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The irreducible representations of the Poincaré group are
characterized by the invariants:
the mass

PP =i

the intrinsic spin
WHW, = —m?S?

which is determined by the Pauli-Lubanski pseudovector

1
WH = _§€“Vaﬁpu5aﬁ
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Forms of Relativistic Dynamics

In the pioneering paper
Forms of Relativistic Dynamics,
Reviews of Modern Physics 21 (1949) 392-399

P.A.M. Dirac stated:

e Invariance under generally covariant transformations.

e The equations of motion shall be expressible in the
Hamiltonian form.

e« <« 618 > »b O



O
The evolution of a system with nonrelativistic dynamics can be
completely determined by the Hamiltonian
using the evolution operator.

U(t) = exp(—iHt).

The state specification at the surface ¢t = 0, an instant in time,
represents the initial conditions.

For the Galilei group the instant is the only appropriate initial
surface.
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For relativistic systems any hypersurface > in Minkowski-space
that does not contain timelike directions can be used to formu-
late the initial conditions.

Here is very useful the concept of the stability group :

Gz:Z—)Z.

The generators of Gy are called kinematical operators.

The rest of the generators map Y. into another surface ¥ — Y'.

They are said to be dynamical operators.
I« <« 818 > P



If the surface X has the property

(VzeD)A(VyeX):Ig€CGx gz =1,

then it is said that the group Gy acts transitively and all ;
points in Y are equivalent.




If we limit ourselves to consider only transitive actions of G on
Y., there exist just five inequivalent possibilities, corresponding
to the five subgroups of the Poincaré group.

Instant Form 20 =0,
Light- Front Form 204+ 23 =0, Dirac
Point Form 2 = a2 >0, 228 N8

R (22)% = a2 >0, 2° >0,

B =3’ >0, 2">0.

Leutwyler and Stern
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Comparison of Instant Form, Front Form, and Point Form

Instant Form

Front Form

Point Form

Quantization Surface

20 =0 20 +23=0 2 =g’ >0
Measure
d3p d’ptdpt Lu
f 2p0 f 2p+ f 290
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Instant Form

Front Form

Point Form

Kinematical Generators

P Pt P M
YR +1 _ KatJ,
i) E' = M1 = Se
2 _ ag+2 _ Ky—Js
s — M to = %
i Ag12
UL = /A
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Instant Form

Front Form

Point Form

Dynamical Generators

PO

p-
YR -1 _ Ks—J,
e = WE- = \/5”
DAL —2  Ky+J:
s — M —7y\/§

PH
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The instant form

X ct

%= x

=y

X z
10 0 0
& 0-1 0 0
LR INOROR=1 80
0o o

The point form

ct= tcoshw

x = tsinhw sin® cos
, y= tsinhw sin@ sing
x = Tsinhw cosO

0O 0 0 1 0 0 0
- 0 -1 0 0 . 0 - 0 0
gzl o 0.1 o =l 0 0 —sini’o 0
0 0 0 —sinh’wsin’0
100 0 *sinh’o sin




Instant form of the homogeneous
SU(2) Yang-Mills theory

The dynamics of the SU(2) Yang-Mills 1-form A in 4-dimensional
Minkowski space-time M, is governed by the conventional local
functional

1
Sym = v/ tr FF A xF
2 I,
defined in terms of the curvature 2-form FF=dA + gA N A

After the supposition of the spatial homogeneity of the connec-
tion A
LsA =0,

the action reduces to the action for a finite dimensional model
¢ <« 1518 > »pl
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described by the degenerate matrix Lagrangian

Lo %tr (DAY D A)T) — V(4),

where

A = Y e,dt + Agieqda’ Y, = Ap, A
(DtA)ai = Aai I geabc}/bAci

The part of the Lagrangian corresponding to the self-interaction
of the gauge fields is gathered in the potential V(A)

V(A) = gZz (tr2(AAT) — tr(AAT)?)

To express the Yang-Mills mechanics in a Hamiltonian form,
¢ <« 16/78 > P
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let us define the phase space endowed with the canonical sym-
plectic structure and spanned by the canonical variables

(Ym PYa; Aai7 Eaz) 9

where

oL oL .
N é—g N 07 Eaz' = 37@ S Aai aF gaabanci
According to these definitions of the canonical momenta, the
phase space is restricted by the three primary constraints

Py, =0

Ya

and thus evolution of the system is governed by the total Hamil-
tonian
Hy = He + uy, (1) P,

¢« <« 17/18 >



where the canonical Hamiltonian is given by
1 2
Ho = Str(EET) + gZ (tr2(AAT) — tr(AAT)2) + g¥, tr(J,AET)

The conservation of the primary constraints in time entails the
further condition on the canonical variables

&, = gtr(J,LAET) =0

They are the first class constraints obeying the Poisson brackets
algebra
{@aa (I)b} = ggabcq)c
In order to project onto the reduced phase space, we use the
polar decomposition for an arbitrary 3 x 3 matrix

Aaz(¢7 Q) s Oak(¢)le

4« <« 18/718 > P



The field strength F,; in terms of the new canonical pairs
(Qik, Pi) and (¢;, ;) is

B = Oak(¢)<Pki +era(y iy (&7 = S55) ) ;

where (L are three left-invariant vector fields on SO(3)

g{* = s%nqbg Pj + cos ¢p3 Py — cot ¢pasin s Ps,
sin ¢o

Eé/ = C?qug Pl —sin¢3P2 —COt¢2COS¢3 P37
sin ¢o

& =P

Vector S; = €jmn(QP)mn is the spin vector of the gauge field
and vjr = Qix — 0y trQ.

e« <« 19718 > >l
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Reformulation of the theory in terms of these variables allows
one to easily achieve the Abelianization of the secondary Gauss

law constraints
b, =MypP,=0

Assuming nondegenerate character of the matrix

SIOL - o5¢hy , — sin ¢g cot o

sin¢27
M = | g2, singy, cosgycoten
07 0; 1

we find the set of Abelian constraints equivalent to the Gauss

law
a0

(©) e« <« 20/78 > »b



The resulting unconstrained Hamiltonian, defined as a projec-
tion of the total Hamiltonian onto the constraint shell

Hy mm(Qap , Pap) := He

Py=0, Py,=0

can be written in terms of (), and P, as

2
tr (yMn)? + §74‘ (131'2622 — trQ4) X

1 2
Hyyy = EtrP — det27

where M,,,,, = (QP — PQ),, denotes the gauge field spin tensor.

To write down the Hamiltonian describing the motion on the
principal orbit stratum we decompose the nondegenerate sym-
metric matrix () as

Q =R" (x1,x2:X3) D R(x1, X2, X3)
R3] < »

3
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with the SO(3) matrix R parameterized by the three Euler an-
gles x; := (x1, X2, x3) and the diagonal matrix D = diag (z1, z2, Z3)-
The Jacobian of this transformation is the relative volume of

orbits
‘ =[]z —=|
i<k

0Q 0Q

J = det
‘ ‘ dxy,” Oxk

and it is regular for the Principal stratum z; < z9 < x3.

The original physical momenta F;;, can then be expressed in
terms of the new canonical pairs (z;,p;) and (x;,py,) as

3
P = R Z QS+ZP as)
=1

< 2218 >s }N



with P, = p,,

Ll GO

2 —
< 2z — Tk

, (cyclic permutation i # j # k),

where &7 are SO(3,R) right-invariant Killing vectors. In terms
of these variables the physical Hamiltonian reads

3
HYMM:;Z:Ipa Zk €2 4+ vO)(z),

where

1 1
kﬁ: cyclic a#b#c
:Eb + l‘c be e xzﬁ/m [

O



ve = f Zx2:1:2
_ 2 a*’b

a<b

The potential V() (1,2, 23) can be rewritten as

ow 3 aw B

VO (21,29, 23) = S

g =1, 2 3

- with the superpotential W = T1T9X3.




Hence the YMM can be represented as the
model

. . 2
Lyny = %trAAT - gZ (tr*(AAT) — tr(AAT)?)

restricted on the invariant submanifold 7% = 0.




Reduction to Yang-Mills mechanics via the
discrete symmetry

The Hamiltonian of the system defined as
lep? Ly

describes a motion on the matrix configuration space and dif-

fers from the considered in preceding section by the inclusion of
the external potential V(X). We specify the external potential
V' in superpotential form

2
N
) <3W( )>

0X

¢ <« 26/78 "> PP
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(N)

with superpotential W'/ given as

W) — jv/detX

After passing to the new variables one can convince that the
Hamiltonian coincides with the Euler-Calogero-Moser Hamil-
tonian embedded in external potential

1 N i N 2
H=->pi+-> — L =+ VW (a3, 2y)
2 itj o)

For the description of discrete symmetries of the Hamiltonian

it is convenient to use the Cartesian form of “angular variables”
¢ <« 277718 > P



lob = YaTp — YpTa

with canonically conjugated variables y,, 7.

One can easily check that the Hamiltonian possesses the follow-
ing discrete symmetries

(A. Polychronakos, Nucl. Phys B 543 (1999) 485 ):

e Parity P

Xy —I; Yi —Yi

pi —Di 4y X
¢ <« 28/718 > P
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e Permutation symmetry M
(M is the element of the permutation group Sy)

T LM (i) Yi Ym (i)

bi Pm(i) Uy T M (4)

Let us consider the certain invariant submanifold of the phase
space of the matrix model and find out the corresponding re-
duced system. One can verify that the submanifold defined by

¢ <« 29718 > P
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the constraints

1
Xa ‘= —F#= (xa + xN—a—i—l) 5

N 1
Xao = — (Yo T UI AN

-5
-5

a -

I, := ﬁ (Pa + PN—at1) » IT, == % (Ta + T™N—at1)
is the invariant submanifold of the system. Because the Hamil-
tonian possesses the discrete symmetry mentioned above this

manifold is invariant under the action
P M
where M is specified as M(a) = N — a + 1. The nonvanishing
Poisson brackets are
= J.: L) = 0w
e« <« 30/718 > P



One can easy verify that for canonical constraints the corre-
sponding fundamental Dirac brackets are

1 1
{Za;pp}D = §5aba {Ua; TR §5ab

As result the system with Hamiltonian reduces to the following
one

N A
1 2 g 2
Hyeq = 5 Zpa Z lgbk ? Z ?ng )
@=Il a;ﬁb a#b
where ) )
e — +
b = (g, + )2 | (24 — 2p)2
Expression for N = 6 coincides with the Hamiltonian of the

SU(2) Yang-Mills mechanics.

¢« <« 318 > »p




Lax pair for Yang-Mills mechanics in zero
coupling limit

The introduction of Dirac brackets allows one to use the Lax
pair of higher dimensional Euler-Calogero-Moser model (namely
Ag) for the construction of Lax pairs (Lyasar, Ayama) of free
Yang-Mills mechanics by performing the projection onto the
constraint shell

ECM ECM
Les les = Ly Agye lcs = Aymm -

The explicit form of the Lax pair matrices for the free SU(2)

Yang-Mills mechanics is given by the following 6 x 6 matrices
¢ <« 32/18 > P
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Lyym =

b1 S 1'111—2:52 = :Elll—szg $1l-1‘r3:63 $1l-1i-2$2 0
xll%vz B2\ m2l35w3 lefzs 0 :vllfzz
xll%g% _le%% p3 0 & a:zligx:s K x1l-1&-3a:3
x1lfx3 xlligxz 0 al3. o x2l2—3x3 N 1:1l1—3:v3
x1l—1|-2z2 B - :czl—2|-313 S mle—SZ:a 22 aTlllfQIQ
y B xll&im <_ L l%}g > »|Ill3]c3 L xlllfn =




Ay mm =

l12

l13

0 p) p) s 7 — 2 p) 0
(x1—x2) (=) (z1+23) (z1+w2)

oo L e b -l |
(z1—22)2 L (x2—x3)2 (z2tas)? L (z1+22)?
l13 l23 l23 113
(@1—z3)2  (m2—z3)2 0 0 (matz3)?  (z1tz3)f
l13 lo3 b l13
(R BN (o) 2 0 0 (z2—z3)?  (z1—=z3)8
(171:]:;2)2 v (x l23‘ 2 1_23‘ 2 0 = 2

2+3) (r2—x3) (z1—22)
0 U R l13 l1o 0
(z1tz2)?  (z1tz3)? (x1=x3)2 | (ETSz2)a
4 <« 348 > Pp O



The equations in the zero coupling constant
form as

Ly vy = [Avvns, Ly vm] s Iyaar = [Ayvarar,

where the matrix ly )/ is




lymm =

0 b2 I3 —liz =lig O

—l1o 0N NS —loz 0 Iy
— I3 {onN 0 o3 VB
g oz 0O 0 -l gl

lig 0 -l log . 0 =i

U li> —ly3 liz 1o N

e« <« 36/78 > P




Light-cone form of the homogeneous
SU(2) Yang-Mills theory

Light-cone model and analysis of constraints

We start with the action of Yang-Mills field theory in four-
dimensional Minkowski space M, endowed with a metric n and
represented in the coordinate free form

1
I::—2 tr '\ xF',

|«g < %78 > e



where ¢ is a coupling constant and the su(2) algebra valued
curvature two-form

F=dA+AANA

is constructed from the connection one-form A. The connection

and curvature, as Lie algebra valued quantities, are expressed
in terms of the antihermitian su(2) algebra basis 7* = ¢%/2i with
the Pauli matrices 0,0 =1, 2,3,

A:AGTG’ F:FaTa.

The metric 1 enters the action through the dual field strength
tensor defined in accordance with the Hodge star operation

1
L G

4« 38/18 > »pl



To formulate the light-cone version of the theory let us intro-
duce the basis vectors in the tangent space Tp(My)

1
BaL = E (ot es), e = (prki=NB
The first two vectors are tangent to the light-cone and the
corresponding coordinates are referred usually as the light-cone
coordinates 7V = (1:+,x_,xl)

xizzi(xozl::r‘?’), et =2zF, k=1,2.

V2

The non-zero components of the metric 7 in the light-cone basis
e« <« 39718 > PH



(er,e_;ex) are

Ny— = 17—+ = —111 = = 122N,
The connection one-form in the light-cone basis is given as

A=A, det + A_dx™ + Apdz®.

By definition the Lagrangian of light-cone Yang-Mills mechanics
follows from the corresponding Lagrangian of Yang-Mills theory
if one supposes that the components of the connection one-form
A depends on the light-cone “time variable” z™ alone

Ay = Ax(z™), Ap = Ap(z?).

k
¢ < 407718 > P



Substitution this ansatz into the classical action defines the

L=
292

Lagrangian of light-cone Yang-Mills mechanics

(F2_ PP +2F8, F% — Fy Fh)

where the light-cone components of the field-strength tensor

are given by

a 81461 abc Ab pc
F+_:8x++6 A

a 8Az abc Ab

e

@ abc b c
Fk_ A

@ abc b gc
B - AiAj,

<

iy I, (8 = T2
144

41/78  »  »pl
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Performing the Legendre transformation

L -0,
DAY
I (o ohey AC_),
814‘1 92( +
vb 1
7T§: 8 ZVQEGbCAb_ z,
94 g

we obtain the canonical Hamiltonian

¢ <« 42/18
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with a potential term

Vi) = 55 [(4242) (4545) — (A343) (agA5)]

2 9,2
The non-vanishing Poisson brackets between the fundamental
canonical variables are

{A:t 77Tb } S 5b 9
{Akﬂfb} = 5k5b :

The Hessian of the Lagrangian system (??) is degenerate, det || -2
0, and as a result there are primary constraints

dADA | |

bcAbAc_O

|« < 4.73/78 [ O



satisfying the following Poisson brackets relations

(o, eV} =0,
{(101(11) aXZ} = 07
B — 2% A%y,

According to the Dirac prescription, the presence of primary
constraints affects the dynamics of the degenerate system. Now
the generic evolution is governed by the total Hamiltonian

Hr = Ho + Ua (7)ol + V()X

where U,(7) and V(1) are u&s/;ge(iiﬁsi functions of the light-



O
cone time 7. Using this Hamiltonian the dynamical self-consistence
of the primary constraints may be checked. From the require-

ment of conservation of the primary constraints gat(ll) it follows

0=pM) = {x+ Hy} = ¥ <Ab,7r; - Azﬂ'f) .

Therefore there are three secondary constraints <p,(12)

) 1= ewe (ALm7 + AlrE) =0,

which obey the so(3,R) algebra

2
{(70:(12) 7%01() ) = €abc 909) °
e« < 4578 > »pi



The same procedure for the primary constraints xj gives the
following self-consistency conditions

0=x2={x%,Ho} — 2g°c Wi

Hereinafter we shall consider the subspace of configuration space
where rank||C|| = 2. For those configurations we are able to in-
troduce the unit vector

AL

N = ,
VJ(AL)2 + (42)2 4 (43 )2

which is a null vector of the matrix || eabc A€ ||, and to decompose
l«« <« 46/78



the set of six primary constraints xj; as

Yr = N,
By i— ik — (V') Ve

In this decomposition the first two constraints ¢, are function-
ally independent and satisfy the Abelian algebra

{¥i, 9} =0,
while the constraints x7, are functionally dependent due to
the conditions
e = 0.
Choosing among them any four independent constraints we

can determine four Lagrange multipliers Vb -
¢« <« 47/78 > P



The Poisson brackets of the constraints v, and ga((f) with the
total Hamiltonian vanish after projection on the constraint sur-

face (CS) defined by equations ¢, = 0 and (p(Q)

{Yr,Hr}|cs =0,
{o@ Hr}lcs=0

and thus there are no ternary constraints.

¢ <« 48718 > P
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Summarizing, we arrive at the set of constraints cp wk, Ve ,XM_.
The Poisson brackets algebra of the first three is

{o, oMY =0,
{d}lad)j} _0
@)

(02,6} = eape?,
{9% %} {90(1) 7Q0b } = {wk ) 90((12)} =0.

The constraints XZI:: | satisfy the relations

b b
C T = 297" A%y,

and the Poisson brackets between these two sets of constraints
e« <« 49718 > P



ol 22 )} = x5,
fol) 281} = {wi,x8.} =0.

Unconstrained version of light-cone mechanics

nize the configuration variables A and A% in one
Aqp whose entries of the first two columns are Af




O

and third column is composed by the elements A%
Aa = |43, A3, 42,

and the momentum variables similarly
I, o= |72, w22 w8

In order to find an explicit parametrization of the orbits with
respect to the gauge symmetry action, it is convenient to use a
polar decomposition [?] for the matrix A,

A=08,

where S is a positive definite 3x3 symmetric matrix, O(¢1, ¢2, ¢3) =

e?173e9271 9373 js an orthogonal matrix parameterized by the three
¢ <« 518 > »p



Euler angles (¢1, ¢2, ¢3). The matrices (J,);; = €iqj are the SO(3,R)
generators in adjoint representation.

It is in order to make a few remarks on the change of vari-
ables. It is well-known that the polar decomposition is valid for
an arbitrary matrix. However, the orthogonal matrix uniquely
determined only for an invertible matrix A

0O=AS1, S =VAAT .

It is worth to note here that in virtue of the constraints the

determinant of the matrix A is related to the third component
¢ <« 52/18 > »p



of the gauge field spin

2det A — gzegikAZTl'? =0.

The polar decomposition induces the point canonical transfor-
mation from the coordinates A,, and II,;, to new canonical pairs
(Sab, Pap) and (¢q, P,) with the following non-vanishing Poisson
brackets

1
o — > o 0na0nc)
{¢a 7Pb} = Ogb -

The expression of the old II,;, as a function of the new coordi-
¢ <« 53/18 > »p



0) @)
nates is
H:O(P_kaja) )
where
ko = 'Y;)l (7715 — Ebmn (Sp)mn) ’
Yit = Sik — 6;x trS and % are three left-invariant vector fields on
the SO(3,R) group

17{4 = Gl Py + cos ¢3 Py, — cot ¢ sin ¢p3 Ps

sin ¢2

e = C?SQSS P — sin ¢3 Py — cot ¢ cos ¢z Ps
sin ¢o

ns =Ps.

O ¢« <« b4z > Py O
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In terms of the new variables the constraints take the form

0 = Oapnf
Xam = O (Pbm + €bme ke + €bij Sis Sjm) ;

Thus one can pass to the equivalent set of constraints

0
%ai = Fgi + €aij ’inkl Ekmn(sp)mn + €amn Sm?) STL’L =0

with vanishing Poisson brackets

{’r]c[i,/v;(/bi} =0.

(©) 4« < 55/78 > »b



In order to proceed further in resolution of the remaining con-
straints we introduce the main-axes decomposition for the sym-
metric 3 X 3 matrix S

@1 00
S=R"(x1,x2,x3) | 0 ¢ 0 | Rx1,x2,X3),
0 0 g3

with orthogonal matrix R(x1,x2,x3) = eX'3ex2/1eX3/3 | parame-
terized by three Euler angles (i, x2,x3). The Jacobian of this
transformation is

l<J
(Q(bXb NH|qa"Qb|

« <« 56/78 > »hl



The momenta p, and p,,, canonically conjugated to the diagonal
¢, and angular variables y,, can be found using the canonical
invariance of the symplectic one-form

3 3 3}
Z Padeab:Zpaan"i_prg an~
a—il a=1

a,b=1

The original momenta P,;, expressed in terms of the new canon-
ical variables, read

3
P:RTZ(paaa+Paaa)R.

= 44« 578> b



Here o, and «, denote the diagonal and off-diagonal basis el-
ements of the space of symmetric matrices with orthogonality
relations

(@) — Gp tr (a,ap) — 20008 tr (@gap) =0

and

1 &
D, . e (cyclic permutationsa # b # ¢).
2 qb — 4c

The ¢ are three SO(3,R) right-invariant vector fields given in
terms of the angles x, and their conjugated momenta p,, via

R =il
= M,
|«§a <« 5808 Pxos,,



where the matrix M is given by

| R
My =——tr| =
- 2 r<J 8XbR>

The explicit form of the three SO(3,R) right-invariant Killing
vector fields is

R ) sin 1
= — sin xj cot CcOs —_—
&1 X1 €0t X2 Py +COSX1 Pxa + = Dxs >
R s COS X1
= cos ] cot sin e
& B s Dy, — —— v et

R
53 = DPxa -

Using these formulas the constraints Y may be rewritten in
¢ <« 5978 > pp
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terms of the main-axes variables as
3
= 1 i
= E R [waaa— §paaa+ §pIJa R,
where

N
@ T qc

1
+ 972 Q(Lna(Qb S QC) )
and n, = R.3.

Note that the constraint on the determinant of the matrix A
now takes the form

2611612613—9 ER-0,

< 60/78 » »pl
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where £§ is the third left-invariant Killing vector field, £ =

Rab gé{

sin 3

ik .
== —+ cos — cot xg sin )
O o D X3 Px2 X2 Sin X3 Pys
ek = e X3 — sin — cot y2 cos
9\ =~ e Y2 DPx1 X3 Pxa X2 X3 Pxs s
IL
o= Dxs -

The expression for the Abelian constraints 1; dictates the ap-
propriate gauge fixing condition

_NaAa_
O

|« < 618 » »l



which is the canonical one in the sense that
{1, b =N

The constraints v; = 0 rewritten in terms of the main-axes
variables may be identified with the nullity of the momenta

bx: = 07 DPx2 = 0,
while the canonical gauge-fixing condition fixes the correspond-
ing angular variables y; and xo

s

_ﬂ- —
X1_27 X2—2

¢ <« 62/78 > Pp



Projection of the canonical Hamiltonian to the surface described
by constraints gives

2 2 -2
T aQ g 4 q
Hic=Hc(x1=5,p=0,x2=5,P=0)= 5(1)? + 243)

Furthermore, taking into account the constraint the projected
Hamiltonian may be rewritten as

2 L\ 2
g §
= . 2(1’% - (G ) '
2q1 g2 g3—g26-=0 a1

It may be checked that the constraints xj 6 lead to the con-

ditions on the “diagonal” canonical palrs (¢i ,pi). Namely, the
¢ <« 63/718 »
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canonical momenta p; and p3 are vanishing

p2=0, p3=0,

while the corresponding coordinates ¢ and g3 are subject to
the constraint

% +aq=0
as well the constraint.

Let us consider the analytic continuation of the constraint into
a complex domain and explore its complex solution

G2 = *iq3.

¢ <« 64/718 > »p



Expressing ¢3 from equation

1Fi [g2tk
q3 = S
2 a1

we find that (¢i,p1) and (x3,p,,) remain real unconstrained vari-
ables whose Dirac brackets are the canonical ones

{qlupl}D = 17 {X3apx2}D = .

Therefore the dynamics of the unconstrained pairs (¢, p1) and
(x3,pys) is given by the standard Hamilton equations with the
Hamiltonian. Remarking that the £3L is conserved we conclude
that coincides with the Hamiltonian of conformal mechanics

2 2
K

- _92<S§+—2>,
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with “coupling constant” x? = (fﬁ T 2)2 determined by the value
of the gauge spin, while the gauge field coupling constant g
controls the scale for the evolution parameter.

The dynamical SL(2, R) symmetry
The action for conformal mechanics

Szzé/dtgff—gﬁ?),
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is invariant under the three parameters time reparametrization

§ ol
" oyt+46]

ad —pPy=1,

accompanied with following transformation of independent vari-

able
1

/t, =
i) vyt 46

q(t).

These transformation represent the conformal transformations
in 0+1 dimensions and can be build with the aid of the explicitly
time dependent Noether generators

1 K 1 1
G — p2+—2 , D:=tH— —qp, K =t*H —tqp+ = ¢°,
2 q 2 2
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which obey the SL(2,R) algebra with respect to the Poisson
brackets

{H,KY=2D, {H,DY=H, {K,D}=-K.

The generators H,D and K correspond to the time translations,
dilations and special conformal transformations

1
— 3
vt +1

i R t ot

respectively.

On the other hand the classical action of pure 4-dimensional

Yang-Mills theory in the Minkowski space-time is invariant un-
¢ <« 6878 » Pp



O O
der the conformal transformations
Sl SR
Au(z) = Auz) + 0 Ay,

where the vector ¢ satisfies the conformal Killing equation
1
& -

and the infinitesimal change J: A4, is given by the Lie derivative
L¢ of a gauge potential
OgAy = LA, = 0,67 A} + 70, A7,

For the standard cartesian Minkowski metric tensor g = (1, —1, —1/—
O j44 <6978 > pbi O



the general solution to the equation reads:

gt .= a¥ + bz + wh ¥ + 2zFe 2" — fEyat

14

where a*,b,c* and W', = —w %

are 15 independent parameters.
Now we construct integrals of motion for the light-cone me-
chanics that are inherited from the conformal symmetry of the
underlining field theory.

The conserved symmetric traceless energy momentum tensor
gives rise to the differential conservation law

9 (§°T%,) =0

Supposing now the dependence of fields on light-cone time only

the charges corresponding to the conformal group symmetry
e« <« 70/718 > »H



O O
can be defined as follows. The identity

0= / dz dx2 0, (YT ) — / de~dx} o, (&TH)+ Y T9 / dz™dx32 D¢
after integration gives
ag ( / dz~dx? §VT+V> = (T w”_ + T ¢t + T;¢") x Vol
=

where Vol := [ d:p_dxi denotes a 3-dimensional volume.
Therefore if the vector £ is specified as

B L b 2cr?,

=

§Z = ai
O ¢4 < 7178 > Pl O



the right hand side of the equation vanishes and we arrive at
the following integrals of motion

I(r) = a"T%, + br T Ty

Now having these in mind consider three functions 7,7y, and
T_ defined on the phase space of our model

Ty = % (71';71'_ +mrat + 71';-1772) 3
To = —1(A%mg + Asnf + A¢rl)
i — %L aA‘L+A1A1+A;Ag) .

< T2/18 » Pl



Note that these functions obey the SL(2, R) algebra and can be
rewritten as Indeed, noting that

T, = Hy 4 mixh + Al

a

With the aid of these functions one can construct three integrals
of motion as follows. Straightforward calculation shows that the
function

I=2f(1)T4 + f(r)To + f(r)T-

with quadratic function f(7) of light-cone time

f(r)=a+br+ er?, a,b,c — constants,
¢ <« 73/18 > P



represents the 3-parameter integral of motion. I one can verify
that the total derivative

di
— - I . Hp).
dr. 01 + (N

vanishes on the primary constraint surface.

This integral of motion generates the rigid 3-parameter in-
finitesimal symmetry transformation A'(7) = A(7) + d;A(7)

07 A% (1) = f(T)A% + f(r)A4,
6pA% (1) = A
5ng (724 :< 74,18 fET)illg



induced by the infinitesimal time reparameterization

! =7 SR

Therefore we conclude that the dynamical algebra of light-cone
Yang-Mills mechanics include the SL(2, R) algebra.

In order to clarify the meaning of the 5- parameter gauge sym-
metry group, let us define 4-vector ¢ = (¢7,67,¢Y), whose +
components coincide with the function f the transverse com-
ponents of which are two arbitrary functions of light-cone time
1,2

£=(f(r), f(),€(n))

)
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One can convince that the change of the dynamical variables
represented by the action of Lie derivative with respect vector
field ¢

OeAj, = LAy = 0,87 A; + 70,4
is a combination of rigid SL(2, R) transformations and Abelian

subgroup of gauge transformation defined by the ¢%(7) = 0 with
i,

Concluding remarks
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Instant Form

Front Form

Point Form

Reduced Systems

Spin Calogero-Moser-
Sutherland model

Free particle motion
or

with external poten- | Conformal mechanics e
tial
Dynamics
Chaotic behavior Exactly integrable
system
?
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Many thanks

TO THE ORGANIZERS !!!

Also many thanks to all of you !!!
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