

Measurement of ^{28,29,30}Si(n, γ) capture cross sections to explain isotopic abundances in presolar grains CERN-INTC-2023-009 / INTC-P-653

C. Lederer-Woods, A. Mengoni, J. Andrzejewski, M. Boromiza, A. Casanovas, S. Cristallo, M. Dietz, C. Domingo-Pardo, A. Gawlik-Ramiega, G. Gervino, A. Gugliemelli, C. Gustavino, T. Heftrich, J. Lerendegui, A. Manna, C. Massimi, A. Negret, N. Patronis, J. Perkowski, C. Petrone, M. Pignatari, T. Rauscher, R. Reifarth, A. Rooney, N. Sosnin, O. Straniero, S. Tosi, P. Ventura, D. Vescovi, P.J. Woods and the n TOF Collaboration

Mainstream SiC Grains

- form in circumstellar envelope of AGB stars
- Si abundances: neutron capture nucleosynthesis (s process) superimposed on initial composition
- isotopic ratios measured with 5% accuracy

PHYSICAL REVIEW C 67, 062802R(2003)

→ need equally accurate neutron capture cross sections on ^{28,29,30}Si

SiC Grains Type C

- C-type sub-group
- likely Supernova origin
- peculiar enhancement of ³²S that can be explained by presence of unstable ³²Si in the SN ejecta
- but needs high n-density to overcome unstable ³¹Si

- bulk of the ²⁹Si and ³⁰Si present today in the Milky Way and in the Sun are made in the convective carbon-shell in massive stars at about 1 GK
- ^{28,29,30}Si neutron capture cross sections are crucial to shape the final yields and the relative abundances of ²⁹Si and ³⁰Si

MACS data on ²⁸Si

KADoNiS database, used in stellar models

▼ Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)

 28 Si $(n,\gamma)^{29}$ Si

Total MACS at 30keV: 1.42 ± 0.13 mb

Cross sections do not include stellar enhancement factors!

Version Total MACS [mb] Partial to gs [mb] Partial to isomer [mb] 0.2 1.42 ± 0.13 - -	▼ History			
0.2 1.42 ± 0.13	Version	Total MACS [mb]	Partial to gs [mb]	Partial to isomer [mb]
	0.2	1.42 ± 0.13	-	-
0.0 2.9 ± 0.3	0.0	2.9 ± 0.3	-	-

(Version 0.0 corresponds to Bao et al.)

Comment

.

Rec. value is from GKD03. MACS vs. kT table from GKD03, but extended above kT= 50 keV with norm. energy dependence from KAB76,BAM75b. Last review: February, 2013

,	L	ict	- 6	-11	a	vai	ila	bl	е	val	ue	es
	- C				-				-			

avai	abie faiae				
original	renorm.	year	type	Comment	Ref
1.42 ± 0.13		2003	с	Linac, TOF, Au: Sat.; DC component is 0.23 (11) mb	GKD03
2.9 ± 0.3		1976	r	Linac, TOF, ⁶ Li, Au:Sat. Recalcul. including data of MDH81	KAB76,BAM75b
J. ² + 1.0		1971	е		AGM71
3.61 ± 0.80		2011	е	ENDF/B-VII.1 plus covariances	endfb71
3.61		2011	е	JENDL-4.0	jendl40
3.61		2004	е	JEFF 3.1	jeff31
1.69		2002	е	JENDL-3.3	jendl33
5.81		2015	t	TENDL-2015 using the TALYS code	tendl15
18.9		2005	t	MOST 2005	Gor05
30.8		2002	t	MOST 2002	Gor02
5.48		2000	t	NON-SMOKER	RaT99
2.4		1978	t		WFH78

MACS data on ²⁹Si

▼ Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)

²⁹Si $(n, \gamma)^{30}$ Si

Total MACS at 30keV: 7.56 ± 0.59 mb

Cross sections do not include stellar enhancement factors!

▼ Comment

JUUUIN

Rec. value is from GKD03 (previous rec. value included no DC component). MACS vs. kT table from GKD03, but extended above kT= 50 keV with norm. energy dependence from KAB76,BAM75b. Last review: February, 2013

List of all available values

original	renorm.	year	type	Comment	Ref
7.56 ± 0.59		2003	с	Linac, TOF, Au: Sat.; DC component is 0.98 (69) mb	GKD03
7.9 ± 0.8		1976	r	Linac, TOF, ⁶ Li, Au:Sat. Recalcul. including data of MDH81	KAB76,BAM75b
10.4		1971	s		AGM71
7.77 ± 0.83		2011	е	ENDF/B-VII.1	endfb71
7.77		2011	e	JENDL-4.0	jendl40
5.75		2002	e	JENDL-3.3	jendl33
6.44		2015	t	TENDL-2015 using the TALYS code	tendl15
63.8		2005	t	MOST 2005	Gor05
89.2		2002	t	MOST 2002	Gor02
8.82		2000	t	NON-SMOKER	RaT99
5.4		1978	t		WFH78

cumulative MACS fraction [%]

MACS data on ³⁰Si

Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)

30
Si $(n,\gamma)^{31}$ Si

Total MACS at 30keV: 1.82 ± 0.33 mb

Cross sections do not include stellar enhancement factors!

▼ History			
Version	Total MACS [mb]	Partial to gs [mb]	Partial to isomer [mb]
0.2	1.82 ± 0.33	-	-
0.0	6.5 ± 0.6	-	-

(Version 0.0 corresponds to Bao et al.)

▼ Comment

Rec. value is from GKD03. MACS vs. kT table from GKD03, but extended above kT= 50 keV with norm. energy dependence from endfb71. Note that there is discrepancy between the activation measurement from BSR02b and the TOF value from GKD03. **A further investigation is required!!!** Last review: August 2014

List of all available values

		available va	1405			
4	original	re orm.	year	type	Comment	Ref
7	1.82 ± 0.33		2003	с	Linac, TOF, Au: Sat.; DC component is 0.48 (30) mb; no res. at 2.235 keV found	GKD03
	3.51 ± 0.15 T= 25 keV	3_4 ± 0.14	2002,2015	с	VdG, Act., Au:RaK88 corrected by 632 mb/586 mb= 1.0785; DC component at kT= 30 keV is 0.36 mb	BSR02b
	0.72 ± 0.07 kT= 52 keV		2002	с	VdG, Act., Au:RaK88	BSR02b
	6.5 ± 0.6		1975	r	Linac, TOF, ⁶ Li, Au:Sat. Recalcul. including data of MDH81	BAM75b
	1.81		2015	е	TENDL-2015 using the TALYS code	tendl15
	4.43 ± 1.52		2011	е	ENDF/B-VII.1 plus covariances	endfb71
	4.43		2011	e	JENDL-4.0	jendl40
	5.75		2004	е	JEFF-3.1	jeff31
	5.75		2002	е	JENDL-3.3	jendl33
	1.9		1971	е		AGM71

cross section [b]

pummin

- 1g of isotopically enriched material
- Legnaro type C₆D₆ Detection Setup
- 20% cascade efficiency assumed
- 2E18 protons

Si28 in EAR-1

0.000m

- 1g of isotopically enriched material
- Legnaro type C₆D₆ Detection Setup
- 20% cascade efficiency assumed
- 2E18 protons

Counts / 2e18 protons Si29(n,g) + background 10⁵ background level Net Counts in Resonance 10⁴ 10³ 10² 10 10⁵ Neutron Energy (eV)

Si29 in EAR-1

0.000m

- 1g of isotopically enriched material
 - Legnaro type C₆D₆ Detection Setup
 - 20% cascade efficiency assumed
 - 2E18 protons

Si30 in EAR-1

Thermal at EAR-2

Beam time request

2x10¹⁸ protons per Si isotope 1x10¹⁸ protons for Au, Empty, C-nat

Total: 7x10¹⁸ protons

EAR-2

2x10¹⁷ protons per Si isotope 5x10¹⁷ protons for Au, Empty, C-nat

Total: 1.1x10¹⁸ protons

Extra slides

Direct Capture ³⁰Si

Direct Capture ³⁰Si

interacting potential is shown. The splitting of the 2p single-particle orbit is also apparent. The MACS-30 value obtained for a potential strength of 54.4 MeV is show as the interception with a vertical bar, while the value for a hard-sphere potential (independent, of course, on the potential strength) is shown by the horizontal line.

