

SANDA Supplying Accurate Nuclear Data for energy and non-energy Applications

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847552 (SANDA).

Measurement of the Double-Differential Cross Section of Neutron-Induced Charged-Particle Emission of Carbon from 20 MeV to 200 MeV

(DDX experiment at n_TOF EAR1)

R. Beyer, M. Dietz, A. Junghans, R. Nolte, <u>E. Pirovano</u>, S. Pomp, D. Tarrío, P. Vaz and the n_TOF collaboration

Neutron-induced emission of light charged particles at 100-200 MeV

High-energy secondary neutrons produced

- in hadron therapy: E_n up to 200/400 MeV for proton/carbon beams
- by cosmic radiation: E_n up to GeV

Absorbed dose calculations require

- DDX data for (n, px) (n, dx) (n, αx) ...
- for tissue constituents (C, N, O)
- > Particularly important for young patients of radiation therapy

Present situation:

- Only few data for $E_n > 50 \text{ MeV}$
- Modelling of composite ejectiles is challenging

Status of DDX data for carbon

Experimental data above 20 MeV:

- DDX for the emission p, d, t, ³He, ⁴He
- Few datasets, at selected neutron energies, only up to 100 MeV
- Evaluations not based on experimental data

Nuclear model calculations (INC models)

- Modelling of the emission of composite ejectiles needs ad-hoc treatment
- Experimental data above 100 MeV are necessary for benchmarking, especially for alpha particles
- Carbon DDX calculation: discrepancies with experimental data, especially (n,dx) (n,αx)

2.0

1.5

1.0

0.5

0.0

n

2.0

sr⁻¹ MeV⁻¹

(mb.

 $d\sigma/d\Omega dE$

Additional Motivation: Simulation of Neutron Detectors

5

Response of a liquid scintillator to monoenergetic neutrons

- 2"× 4" BC501A (H:C = 1.212)
- $E_{\rm n} = 62.3 65 \, {\rm MeV}$
- ▶ pulse height response dominated by ¹²C breakup reactions

Simulation (LA150 - statistical model)

DDX measurements at n_TOF?

Study of the feasibility of DDX measurements at n_TOF

- Prototype experiment with carbon, $E_n = 20$ MeV 200 MeV, for the emission of p, d, t, α
- focus on $E_n > 100 \text{ MeV}$
- aiming at stat. uncertainties similar to that of previous experiments, at least at forward angles

Detector test beamtime (LOI of Sep 2020)

- Study the interaction with the $\boldsymbol{\gamma}$ flash
- Test particle identification techniques
- However: large energy ranges, low interaction probabilities
- To determine if DDX measurements are possible, and under which limitations, a longer beamtime is necessary!

Proposed experimental setup

- Installed in EAR1
- Vacuum chamber & $3 \times$ triple-stage telescopes $\Delta E_1 \Delta E_2 E$ at 20°, 60°, 120°
- ΔE detectors: Si-diodes (50 1000 μ m) E detectors: plastic & CeBr₃ scintillators
- Two graphite samples: 50 μm and 2 mm
- PPFC (²³⁵U) as neutron monitor
- Particle identification: double/triple coincidences combined with the ΔE-E technique
- Two samples: investigation of correction of the energy distributions due to losses in the graphite sample

Prototype setup & test beamtime

- Vacuum chamber from 'old' experiments
- Δ*E*¹ diodes: 50/60 μm
- Δ*E*² diodes: 500/1000 μm
- Scintillators: 150-mm plastic & 76.2-mm CeBr₃
- Main difficulty: γ-flash induced e.m. interferences

Solutions

- NTOF
- Shielded preamplifier, improved grounding, short cables
- Preamp inside the chamber, directly under on the Si diodes
- RF tight chamber (windows included)

Results with the RF-tight chamber

Particle identification

- Particle separation is possible up to $E_n \sim 200 \text{ MeV}$
- Choosing detectors with low intrinsic noise is fundamental

INTC Meeting, 8/02/2023

Count rate estimates

- 25×10¹⁷ protons / 2 mm sample ٠ + 5×10^{17} protons / 50 µm sample
- Comparison with measurement at TSL, $E_n = 100 \text{ MeV}$, $\Delta E_n = 10 \text{ MeV}$ ٠
- Cut-off energy determined by thickness of ΔE_1 detector (50 μ m Si) •

DDX experiment at n TOF

100

UPPSALA UNIVERSITET

DDX experiment at n_TOF

Summary and outlook

- Proof-of-principle experiment for the measurement of DDX data for carbon in EAR1, focused on $E_n > 100 \text{ MeV}$
- New kind of measurement at n_TOF, in a largely unexplored energy range
- If successful, future measurements could include:
 N, O, detector materials
- According to the estimates, the statistical uncertainties should be comparable to that of previous experiments, at least at forward angles
- Requested protons: 3×10¹⁸

