Quantum colour centers in diamond studied by emission channeling with short-lived isotopes (EC-SLI) and radiotracer photoluminescence (IS668)

L.M.C. Pereira¹, U. Wahl², J.G. Correia², B. Biesmans¹, A.R.G. Costa¹, M.R. da Silva³, E. David Bosne⁴, A. Lamelas³, G. Magchiels¹, J. Moens¹, S.M. Tunhuma¹, R. Villarreal¹, A. Vantomme¹ (EC-SLI collaboration) V. Amaral³, E. Corte⁵, S. Ditalia Tchernij⁵, J. Forneris⁵, B. Green⁶, K. Johnston⁷, E. Nieto Hernandez⁵, P. Olivero⁵, V. Pugliese⁵

1 KU Leuven, Quantum Solid State Physics, Belgium

2 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal

3 CICECO- Instituto de Materiais de Aveiro, Universidade de Aveiro, Portugal

4 Institute of Experimental and Applied Physics, Technical University of Prague, Czech Republic

5 Physics Department, University of Torino, and Instituto Nazionale di Fisica Nucleare (INFN), Torino, Italy

6 University of Warwick, UK

7 CERN-EP ISOLDE, Geneva, Switzerland

Spokespersons: L.M.C. Pereira, U. Wahl

Local contact & technical coordinator: J.G. Correia

Quantum colour centers in diamond

- • Research interest of IS668: impurities in diamond which exhibit quantum properties useful for future applications: "quantum centers"
- • General characteristics: Dilute impurity atoms embedded in diamond matrix (historically termed "colour centers")
- • Useful quantum properties are related to spin interactions, (stimulated) photon emission, coherence, entanglement, polarization of photons…
- Quantum properties emerge from the electronic •interaction of the impurity with the diamond host
- • Microscopic structure of centers determines their quantum properties

KU LEUVEN

TÉCNICO

Split-*vacancy* centers in diamond

- • Colour centers in diamond are intensively investigated for their applications in processing and communication of quantum information and metrology.
- •Diamond has a very tight lattice, so it is common that larger impurity atoms pair with a vacancy V.
- •Two possible configurations for impurity-vacancy centers in diamond:

- •Superior optical properties of the centers with split-vacancy structure are to a large extent a consequence of their $D_{\rm 3d}$ inversion (mirror) symmetry.
- •Many colour centers in diamond are commonly produced by ion implantation.
- •**How to optimize implantation conditions in order to achieve unperturbed split-vacancy configurations?**
- •Emission channeling lattice location experiments are uniquely suited to study this problem.

[1] J.P. Goss et al, Phys. Rev. Lett. 77 (1996) 3041 [2] T. Iwasaki et al, Sci. Rep. 5 (2015) 12882

[4] T. Iwasaki, et al, Phys. Rev. Lett. 119 (2017) 253601 i *et al*, Sci. Rep. 5 (2015) 12882 [5] S.D. Tchernij, … J. Forneris, *et al*, ACS Photonics 5 (2018) 4864 [3] S.D. Tchernij, … J. Forneris, *et al*, ACS Photonics 4 (2017) 2580 [6] E. Corte, …L.M.C. Pereira, U. Wahl, J. Forneris, *et al*, ACS Photonics 10 (2023) 101

INTC, 8.2.2023

Example: Predicted structures of Mg defects in diamond

Interstitial

Substitutional

MgV

 $MgV₂$

[7] A. Pershin, et al, "Highly tunable magneto-optical response from Mg*V* color centers in diamond", npj Quantum Information 7 (2021) 99

- Theoretically investigated structures of Mg-related complexes in diamond [7]:
- •Interstitial Mg.: ($T_{\sf d}$ symmetry)

•

•

•

- • Substitutional Mg(S) ($T_{\sf d}$ symmetry)
- Mg*V*: split-*vacancy* configuration with Mg on BC sites $(D_{3d}$ symmetry <111>) predicted with ZPL=563 nm.
- Mg V_2 : (C_1 symmetry <100>)

Formation energies favour Mg*V*, Mg(S), possibly Mg*V₂*, rule out Mg_i

4INTC, 8.2.2023

Emission Channeling with Short-Lived Isotopes (EC-SLI)

- • Radioactive probe atoms are produced and ion implanted into single crystals at ISOLDE, 30-50 keV, 1011-10¹³ cm^{−2}
- • Thermal processing: post-implant annealing at \mathcal{T}_{a} or vary implantation temperature \mathcal{T}_{i}
- • Position- and energy sensitive detector [8] is used to detect emission channeling [9] effects of β− decay particles in the vicinity of major crystallographic directions.

[8] U. Wahl et al, Nucl. Instr. Meth. A 524 (2004) 245[9] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121

"Many-beam" calculation of β− emission yields

Occupied lattice sites identified by comparison of experimental results to simulated yields

high-symmetric sites in diamond

 β− angular emission yield patterns are calculated for ~250 lattice sites in the diamond unit cell using the "many-beam" [9,10] approach.

•

- • Anisotropy and contours of patterns change with position of emitter in the lattice, as shown for the <110>, <211>, <100>, and <111> patterns from 27Mg on S and BC sites.
- • The occupation of several sites results in a linear superposition of patterns.

[9] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121[10] U. Wahl, *et al*, Hyperf. Interactions (2000) 129 349

6

EC characterization of ²⁷Mg colour centers in diamond (RT)

LISBOA

- • EC from RT implanted ²⁷Mg shows 15% on S and 42% on
bond-center (BC) sites I61 bond-center (BC) sites [6]
- •• The occupation of BC sites is due to MaV the endit. is due to MgV in the splitvacancy configuration.

•

- • High yield of formation (42%) of the <mark>Mg*V* defect</mark>
- However, ~43% of emitters are in "random" sites: could bewithin $\overline{\textsf{Mg}\textsf{V}_{2}}$ and $\overline{\textsf{Mg}\textsf{V}_{3}}$ complexes: lower symmetry \Leftrightarrow quite weak channeling

[6] E. Corte, …L.M.C. Pereira, U. Wahl, J. Forneris, et al, ACS Photonics 10 (2023) 101

7INTC, 8.2.2023

EC characterization of ²⁷Mg colour centers in diamond (800°C)

- • EC from 800°C implanted ²⁷Mg show 14% on S and 30% on
hond-center (BC) sites [5] bond-center (BC) sites [5]
- •• The occupation of BC sites is due to MaV the endit. is due to MgV in the splitvacancy configuration.
- • High yield of formation (30%) of the <mark>Mg*V* defect</mark>

•

 However, ~56% of emitters are in "random" sites: could bewithin $\overline{\textsf{Mg}\textsf{V}_{2}}$ and $\overline{\textsf{Mg}\textsf{V}_{3}}$ complexes: lower symmetry \Leftrightarrow quite weak channeling

> [6] E. Corte, …L.M.C. Pereira, U. Wahl, J. Forneris, et al, ACS Photonics 10 (2023) 101

PL from 24Mg implanted in diamond at ISOLDE

- • \cdot Stable ²⁴Mg implanted into "electronic-grade" diamond([N]<5 ppb) at ISOLDE, 30 keV
- • 532 nm laser excitation shows Zero Phonon Line (ZPL) from MgVcenters at 557.6 nm, as well as characteristic phonon replicas (measured at U Turin).
- • ZPL with narrow FWHM (3.4-3.7 nm, measure of structural quality of MgV centers) already after RT implantation and annealing at 800°C, or 800°C implantation.
- • Same FWHM as in literature after 1600°C annealing (3.5 nm) [11].

[11] E. Osmic, et al, "Unusual temperature dependence of the photoluminescence emission of Mg*V* centers in diamond", Appl.
District the decay coated Phys. Lett. 121 (2022) 084101

1×10¹² cm^{−2} implanted at $T_{\text{i}} = \text{RT},$ annealed 20 min at $\, T_{\mathrm{a}}$ =800°C

1×10¹² cm^{–2} implanted at $\mathcal{T}_\mathsf{i}{=}800^\circ\mathrm{C}$

5 \times 10 $^{\rm 9}$ cm $^{\rm -2}$ implanted at T_{i} = RT, annealed 20 min at $\, T_{\mathrm{a}}$ =800°C

MgV of good structural quality can be efficiently produced

Preliminary EC results on 75Ge

- • RT implantation results in ~20% on BC sites and ~50% on S sites.
- • BC fraction decreases to a few % for implantation *or* annealing at higher temperatures.
- • No general differences visible in betweenimplantation at higher temperatures orpost-implant annealing.
- • Variation of fluence by factor of 5 had no visible effect.
- • Significantly lower BC fractions than for other elements, but still much higher thanreported optical activation of 0.4-0.7% [12]

[12] Y. Zhou, et al, "Direct writing of single germanium vacancy center arrays in diamond," New J. Phys. 20 (2018) 125004

As function of annealingtemperature $\, T_{\text{i}}$ for implantations at RT, 300°C and 600°C, higher fluence

As function of implantationtemperature $\, T_{\text{i}}$ up to 900°C, lower fluence

Proposed experiments: 3 key areas

Elements not available during last 2 years

Here the focus will be on ²⁰⁹Pb, which is of particular relevancesince PbV centers in split vacancy configuration have not yet been structurally verified.

Also, it was not yet possible to study ³¹Si, ⁶He, ²³Ne, ⁴¹Ar, ⁸⁷Kr.

So far, we only studied implantation at RT or elevated temperatures. Especially in the case of Ge, there are indications that low- $\mathcal T$ implantation could improve Ge*V* formation.

MgV $2 \t3$ $\overline{4}$ $E_{VBM} + E_{F}$, [eV]

Implantation into pre-dopeddiamonds

Literature has reported improved optical activation of Sn and Mg in *n*-doped diamond, however, the mechanism is unclear: change of charge state of Sn \mathcal{V} → Sn \mathcal{V} , Mg \mathcal{V} → Mg \mathcal{V} − Sn*V*^o→ Sn*V* , Mg*V* → Mg*V*
or increased production of splitvacancy configuration?

Beam request

 C^2TN

UT TÉCNICO KULEUVEN **XXX 244-244**

Total requested shifts: 20(split into ~8 runs over 2 years

Most runs or targets are to beshared with other users

