# Quantum colour centers in diamond studied by emission channeling with short-lived isotopes (EC-SLI) and radiotracer photoluminescence (IS668)

L.M.C. Pereira<sup>1</sup>, U. Wahl<sup>2</sup>, J.G. Correia<sup>2</sup>, B. Biesmans<sup>1</sup>, A.R.G. Costa<sup>1</sup>, M.R. da Silva<sup>3</sup>, E. David Bosne<sup>4</sup>, A. Lamelas<sup>3</sup>, G. Magchiels<sup>1</sup>, J. Moens<sup>1</sup>, S.M. Tunhuma<sup>1</sup>, R. Villarreal<sup>1</sup>, A. Vantomme<sup>1</sup> (<u>EC-SLI collaboration</u>) V. Amaral<sup>3</sup>, E. Corte<sup>5</sup>, S. Ditalia Tchernij<sup>5</sup>, J. Forneris<sup>5</sup>, B. Green<sup>6</sup>, K. Johnston<sup>7</sup>, E. Nieto Hernandez<sup>5</sup>, P. Olivero<sup>5</sup>, V. Pugliese<sup>5</sup>

1 KU Leuven, Quantum Solid State Physics, Belgium

2 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal

3 CICECO- Instituto de Materiais de Aveiro, Universidade de Aveiro, Portugal

4 Institute of Experimental and Applied Physics, Technical University of Prague, Czech Republic

5 Physics Department, University of Torino, and Instituto Nazionale di Fisica Nucleare (INFN), Torino, Italy

6 University of Warwick, UK

7 CERN-EP ISOLDE, Geneva, Switzerland

Spokespersons: L.M.C. Pereira, U. Wahl

Local contact & technical coordinator: J.G. Correia



#### Quantum colour centers in diamond

- <u>Research interest of IS668</u>: impurities in diamond which exhibit quantum properties useful for future applications: "<u>quantum centers</u>"
- <u>General characteristics:</u> Dilute impurity atoms embedded in diamond matrix (historically termed "colour centers")
- <u>Useful quantum properties</u> are related to spin interactions, (stimulated) photon emission, coherence, entanglement, polarization of photons...
- Quantum properties emerge from the electronic interaction of the impurity with the diamond host
- <u>Microscopic structure</u> of centers determines their quantum properties





INTC. 8.2.2023

### Split-vacancy centers in diamond

- Colour centers in diamond are intensively investigated for their applications in processing and communication of quantum information and metrology.
- Diamond has a very tight lattice, so it is common that larger impurity atoms pair with a vacancy V.
- Two possible configurations for impurity-vacancy centers in diamond:



- Superior optical properties of the centers with split-*vacancy* structure are to a large extent a consequence of their D<sub>3d</sub> inversion (mirror) symmetry.
- Many colour centers in diamond are commonly produced by ion implantation.
- How to optimize implantation conditions in order to achieve unperturbed split-vacancy configurations?
- Emission channeling lattice location experiments are uniquely suited to study this problem.

J.P. Goss *et al*, Phys. Rev. Lett. 77 (1996) 3041
 T. Iwasaki *et al*, Sci. Rep. 5 (2015) 12882
 S.D. Tchernij, ... J. Forneris, *et al*, ACS Photonics 4 (2017) 2580



[4] T. Iwasaki, *et al*, Phys. Rev. Lett. 119 (2017) 253601
[5] S.D. Tchernij, ... J. Forneris, *et al*, ACS Photonics 5 (2018) 4864
[6] E. Corte, ...L.M.C. Pereira, U. Wahl, J. Forneris, *et al*, ACS Photonics 10 (2023) 101

INTC, 8.2.2023

#### Example: Predicted structures of Mg defects in diamond





Substitutional





MgV

 $MgV_2$ 

[7] A. Pershin, *et al*, "Highly tunable magneto-optical response from Mg*V* color centers in diamond", npj Quantum Information 7 (2021) 99



- Theoretically investigated structures of Mg-related complexes in diamond [7]:
- Interstitial Mg<sub>i</sub>: (T<sub>d</sub> symmetry)

•

- Substitutional Mg(S) (*T*<sub>d</sub> symmetry)
- Mg V: split-vacancy configuration with Mg on BC sites ( $D_{3d}$  symmetry <111>) predicted with ZPL=563 nm.
- Mg $V_2$ : ( $C_1$  symmetry <100>)



Formation energies favour MgV, Mg(S), possibly Mg $V_2$ , rule out Mg<sub>i</sub>

#### INTC, 8.2.2023 4

#### Emission Channeling with Short-Lived Isotopes (EC-SLI)

- Radioactive probe atoms are produced and ion implanted into single crystals at ISOLDE, 30-50 keV, 10<sup>11</sup>-10<sup>13</sup> cm<sup>-2</sup>
- Thermal processing: post-implant annealing at  $T_a$  or vary implantation temperature  $T_i$
- Position- and energy sensitive detector [8] is used to detect emission channeling [9] effects of β<sup>-</sup> decay particles in the vicinity of major crystallographic directions.

[8] U. Wahl *et al*, Nucl. Instr. Meth. A 524 (2004) 245
[9] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121





#### "Many-beam" calculation of $\beta^-$ emission yields

Occupied lattice sites identified by comparison of experimental results to simulated yields

high- symmetric sites in diamond





- β<sup>-</sup> angular emission yield patterns are calculated for ~250 lattice sites in the diamond unit cell using the "many-beam" [9,10] approach.
- Anisotropy and contours of patterns change with position of emitter in the lattice, as shown for the <110>, <211>, <100>, and <111> patterns from <sup>27</sup>Mg on S and BC sites.
- The occupation of several sites results in a linear superposition of patterns.

[9] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121 [10] U. Wahl, *et al*, Hyperf. Interactions (2000) 129 349

6

#### EC characterization of <sup>27</sup>Mg colour centers in diamond (RT)



- EC from RT implanted <sup>27</sup>Mg shows 15% on S and 42% on bond-center (BC) sites [6]
- The occupation of BC sites is due to MgV in the splitvacancy configuration.
- High yield of formation (42%) of the Mg V defect
- However, ~43% of emitters are in "random" sites: could be within Mg V<sub>2</sub> and Mg V<sub>3</sub> complexes: lower symmetry ⇔ quite weak channeling

[6] E. Corte, ...L.M.C. Pereira, U. Wahl, J. Forneris, *et al*, ACS Photonics 10 (2023) 101



INTC, 8.2.2023 7

### EC characterization of <sup>27</sup>Mg colour centers in diamond (800°C)



- EC from 800°C implanted <sup>27</sup>Mg show 14% on S and 30% on bond-center (BC) sites [5]
- The occupation of BC sites is due to MgV in the splitvacancy configuration.
- High yield of formation (30%) of the Mg V defect
- However, ~56% of emitters are in "random" sites: could be within Mg V₂ and Mg V₃ complexes:
  lower symmetry
  ⇔ quite weak channeling

[6] E. Corte, ...L.M.C. Pereira, U. Wahl, J. Forneris, *et al*, ACS Photonics 10 (2023) 101



8

INTC, 8.2.2023

#### PL from <sup>24</sup>Mg implanted in diamond at ISOLDE

- Stable <sup>24</sup>Mg implanted into "electronic-grade" diamond ([N]<5 ppb) at ISOLDE, 30 keV</li>
- 532 nm laser excitation shows Zero Phonon Line (ZPL) from MgV centers at 557.6 nm, as well as characteristic phonon replicas (measured at U Turin).
- ZPL with narrow FWHM (3.4-3.7 nm, measure of structural quality of MgV centers) already after RT implantation and annealing at 800°C, or 800°C implantation.
- Same FWHM as in literature after 1600°C annealing (3.5 nm) [11].

[11] E. Osmic, *et al*, "Unusual temperature dependence of the photoluminescence emission of Mg*V* centers in diamond", Appl. Phys. Lett. 121 (2022) 084101





 $1 \times 10^{12}$  cm<sup>-2</sup> implanted at  $T_i = RT$ , annealed 20 min at  $T_a = 800^{\circ}C$ 

 $1 \times 10^{12} \text{ cm}^{-2}$ implanted at  $T_i = 800^{\circ}\text{C}$ 

 $5 \times 10^9$  cm<sup>-2</sup> implanted at  $T_i = RT$ , annealed 20 min at  $T_a = 800^{\circ}C$ 

## Mg*V* of good structural quality can be efficiently produced

#### Preliminary EC results on <sup>75</sup>Ge

- RT implantation results in ~20% on BC sites and ~50% on S sites.
- BC fraction decreases to a few % for implantation *or* annealing at higher temperatures.
- No general differences visible in between implantation at higher temperatures or post-implant annealing.
- Variation of fluence by factor of 5 had no visible effect.
- Significantly lower BC fractions than for other elements, but still much higher than reported optical activation of 0.4-0.7% [12]

[12] Y. Zhou, *et al*, "Direct writing of single germanium vacancy center arrays in diamond," New J. Phys. 20 (2018) 125004





As function of annealing temperature  $T_i$  for implantations at RT, 300°C and 600°C, higher fluence

As function of implantation temperature  $T_i$  up to 900°C, lower fluence

#### Proposed experiments: 3 key areas



Elements not available during last 2 years

Here the focus will be on  $^{209}$ Pb, which is of particular relevance since PbV centers in splitvacancy configuration have not yet been structurally verified.

Also, it was not yet possible to study <sup>31</sup>Si, <sup>6</sup>He, <sup>23</sup>Ne, <sup>41</sup>Ar, <sup>87</sup>Kr.



So far, we only studied implantation at RT or elevated temperatures. Especially in the case of Ge, there are indications that low-*T* implantation could improve Ge*V* formation. Implantation into pre-doped diamonds

Literature has reported improved optical activation of Sn and Mg in *n*-doped diamond, however, the mechanism is unclear: change of charge state of Sn  $V^0 \rightarrow$  Sn  $V^-$ , Mg  $V^0 \rightarrow$  Mg  $V^$ **or** increased production of splitvacancy configuration?



#### Beam request

C<sup>2</sup>TN

| isotope                            | half-life      | yield<br>(atoms/µC)   | target - ion<br>source                        | Shifts<br>(8h) |
|------------------------------------|----------------|-----------------------|-----------------------------------------------|----------------|
| <sup>209</sup> Pb                  | 3.25 h         | no yield in data base | UC <sub>x</sub> -Nb - RILIS Pb<br>or LIST Pb  | 4              |
| <sup>75</sup> Ga→ <sup>75</sup> Ge | 126 s→82.8 min | 3×10 <sup>7</sup>     | UC <sub>x</sub> -W - RILIS Ga                 | 3              |
| <sup>121</sup> Sn                  | 27.06 h        | 1×10 <sup>8</sup>     | UC <sub>x</sub> -W - RILIS Sn                 | 4              |
| <sup>27</sup> Mg                   | 9.5 min        | 1×10 <sup>7</sup>     | Ti-W - RILIS Mg                               | 2.5            |
| <sup>28</sup> Mg                   | 21 h           | 6×10 <sup>6</sup>     | Ti-W or UC <sub>x</sub> -W -<br>RILIS Mg      | 0.5            |
| <sup>6</sup> He                    | 807ms          | 7×10 <sup>7</sup>     | UC <sub>x</sub> or BeO cold<br>plasma         | 3.0            |
| <sup>23</sup> Ne                   | 37.2 s         | 1.6×10 <sup>6</sup>   | UC <sub>x</sub> plasma                        | 1.0            |
| <sup>41</sup> Ar                   | 109 min        | 1.6×10 <sup>6</sup>   | UC <sub>x</sub> or TiO <sub>2</sub><br>plasma | 0.5            |
| <sup>87</sup> Kr                   | 76.3 min       | 2×10 <sup>8</sup>     | UC <sub>x</sub> or PbBi<br>plasma             | 0.5            |
| <sup>31</sup> Al→ <sup>31</sup> Si | 644 ms→157 min | 2.5×10 <sup>5</sup>   | UC <sub>x</sub> -W - RILIS AI                 | 1              |

Total requested shifts: 20 (split into ~8 runs over 2 years

Most runs or targets are to be shared with other users

