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Why LIST? -Fr contamination at some masses

Long-lived, strongly-produced Fr contaminants only at A=212,213 and 220
At all other masses, Fr’s are short-lived (ms/sub-ms), can be suppressed by the beam gate
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The CRIS team will provide and set-up the “injection-seeded” laser to obtain the
“narrow-band” mode.



The Method: In-source laser spectroscopy+IDS+MR-ToF

B. A. Marsh et al., NIM B317, p.550 (2013) Protons
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Selected latest results on Bi isotopes (IS608+IS650)

IS608 A.E. Barzakh et al., Shape staggering in gs of 187-189B;j 1S608 B. Andel et al., 188Bi beta-delayed fission IS650 B. Andel et al., New isomer in 214Bi
Phys. Rev. Lett. 127, 192501 (2021) Phys. Rev. C 102, 014319 (2020) Phys. Rev. C 104, 054301 (2021)
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Goal 1: High-spin isomers 212mi.m2.213mBj aqnd the N=126 kink problem

Goal 1. Properties of the high-spin isomers 212mlm2.213mBj and their link to the Bi gs charge radii kink at N=126: is
the position and occupation of the i11/2 neutron orbital relative to g9/2 a real culprit for the N=126 kink?

Skyrme, P.M. Goddard et al,PRL110 (2013) OReIativistic, T. Day Goodacre et al,PRL126(2021)&PRC104(2021)
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It seems the models in which the i11/2 neutron orbital is below g9/2 (or very close to it)
reproduce the kink better, due to enhanced population of the i11/2 orbital. In particular, this is
a common property of relativistic approaches.




Goal 1: High-spin isomers 212mi.m2.213mBj aqnd the N=126 kink problem

Goal 1. Properties of the high-spin isomers 212ml.m2213mBj and their link to the kink in Bi gs charge radii at
N=126: is the position and occupation of the i11/2 neutron orbital a real culprit for the N=126 kink?

Skyrme, P.M. Goddard et al,PRL110 (2013) Relativistic, T. Day Goodacre et al, PRC104,054322(2021)
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This effect can be probed by charge radii of high-spin isomers in 212m2.213mBj ‘\whose
configuration does include an i11/2 neutron:

212mzBj [1rh9/2x((vg9/2)?xvi11/2)]18-,

213mBj [1th9/2x (vg9/2xvi11/2)]25/2-,

relative to their gs’s or 212m1Bj [1th9/2xvg9/2)]8-,9-, which have less/no i11/2 neutrons.

Task 1: We will perform hfs scanning for 2t2m2.213mBj with LIST in narrowband mode
(procedure confirmed for Po/Ac’s in our 2022 campaigns. If yields allows, can also try
PI-LIST). Some scanning can be done with MR-ToF (for longest-lived cases, if IDS is
not enough). Deduced magnetic moments will help to confirm/establish the
configurations.

Task 2: Decay properties of some of these isomers are poorly known, studied
mostly some 40-50 years ago. We can now do it much better with the versatile IDS
system, e.g. to search for the IT decay from 18- to 8/9- (or even to the gs) in 212m2B;j,
and/or to measure for the 15t time the half-life of 213mBi.




CRIS “injection-seeded” narrowband laser (April 2022)
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Goal 2: Anomalous 9/2- gs magnetic moment systematics in 215.217Bi:
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The shell-model wave function components for the 9/2-
gs of the even-N Bi isotopes. Only components with the

evidence for deformation/configuration mixing?
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Goal 2: Anomalous 9/2- gs magnetic moment systematics in 215.217Bi:

evidence for deformation/configuration mixing?
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Task 3: To be able to publish these data, we need to confirm the observed deviation and improve uncertainties.
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Goal 3: First hfs measurements and “first” nuclear spectroscopic data

for 219.220Bj (only half-lives are known)
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Beam request

Table 1. Measured (red, IS608/IS650) and calculated (black) yields and the shifts request
for Bi nuclei based on the 2 pA proton beam intensity, see text for details. The number of shifts
account for half-lives, measurement procedure and respective yields.

beam on target

LIST yield, |Shifts
Nuclide Tiz,s  |RILIS yield, ions/pC| ions/nC
212m2, I"=(18") 420 6.1E+03 3.1E+02 3ab
212ml, I"=(8,9) 1500 5.5E+03 2.8 E+02
213m, IF = (25/2") >168 8.2E+02 4.1E+01 3ab
215 456 7.8E+03 3.9E+02 |
215m 36.9 1.6E+02 7.8E+00
216 135 1.0E+03 (IS650) 5.0E+01 |
216m 396 1.SE+03 (IS608)° 7.5E+01
217 98.5 5.8E+02 2.9E+01 1
218 33 2.0E+02 (IS650) 8.4E+00 0
219 8.7 6.6E+00 3.3E-01 2b
220 9.5 1.4E+00 6.9E-02 2°
209 Multiple 0.5 h scans |
Reference Faraday Cup scans over the whole run
PI-LIST optimization with the proton )

4Scans of both isomers will be done simultaneously and require in total approximately 2 shifts; this
also includes time needed for the search of unknown gamma lines and determination of the
scanning range. Very broad hfs scanning with many steps will be required, by analogy with 2!2Po,

measured in 2022.

®1 shift will be used for decay spectroscopy.

‘Isomer ratio was determined during IS608 campaign from the ratio of the MR-ToF hfs maxima

In total, 16 shifts requested for hfs/IS, nuclear spectroscopy and reference
measurements



TAC comments-1

The requested yields are based on a previous RILIS run. A factor of 20 is applied for LIST
losses which, for some cases, is on the optimistic side.

- Agree, but for most of cases, e.g. at least for 213-218Bj, we are still at a good level,
even with a larger “suppression factor” of, say, 50: e.g. 2 cps for 2!8Bi instead of 8 cps,
see previous slide. Our measurement limit is ~0.01 cps (depends on the decay
mode/background)

It should be noted that running in PI-LIST will have much higher losses, up to a factor of
1000, but the sensitivity of IDS should still allow for successful measurements.
- We might not need to use PI-LIST at all, especially for the most difficult cases,
and will just use a ‘narrow-band’ laser from CRIS, this will avoid extra losses, still
keeping a suitable hfs resolution (was proven in Po/Ac LIST runs in 2022). See also
the simulated spectrum for 299Bi

The suppression of Fr can vary along the isotopic chain, fluctuations are to be expected.
- Noted, and we have large experience with those Fr’s, should be ok with IDS. Also, in
some cases we can use MR-ToF scanning

The yields of 213-215Bj seem credible. For 216Bi, there are no data in the ABRABLA
database: where did this figure come from?
- Yields for 214-218Bj were measured in 1IS650 (previous slide); also earlier in our ISOLDE
experiments some 15 years ago, during our first measurements up to 218Bi (nuclear
spectroscopy with RILIS), thus we are fully confident for reaching up to 218.21°Bj



Do we really need PI-LIST mode?

Simulations for 29°Bi (R. Heinke)

Standard RILIS

0.8 /
2 0.6 LIST+CRIS narrow band
% (our preferred mode)
& 0.4
02
0.0 J U ‘ UL

—-20 -10 0 10 20
Center frequency shift (GHz)

*Blue: Standard in-source spectroscopy + dual etalon laser (~2.9GHz)

*Red: LIST collinear mode + dual etalon laser (~2.2GHz) — The better resolution comes from the fact that the
LIST only probes atoms flying towards the laser into the LIST. There will be a shift against the other modes.
*Green: LIST collinear mode + CRIS narrowband laser (~1.4GHz) — our preferred mode of operation here
*Black: PI-LIST mode + CRIS narrowband laser (~0.5GHz)

Conclusion: no significant improvement with PI-LIST, thus we might not use it at all
(TAC asked on PI-LIST intensity reduction)




TAC comments-1

The requested yields are based on a previous RILIS run. A factor of 20 is applied for LIST
losses which, for some cases, is on the optimistic side.

- Agree, but for most of cases, e.g. at least for 213-218Bj, we are still at a good level,
even with a larger “suppression factor” of, say, 50: e.g. 2 cps for 2!8Bi instead of 8 cps,
see previous slide. Our measurement limit is ~0.01 cps (depends on the decay
mode/background)

It should be noted that running in PI-LIST will have much higher losses, up to a factor of
1000, but the sensitivity of IDS should still allow for successful measurements.
- We might not need to use PI-LIST at all, especially for the most difficult cases,
and will just use a ‘narrow-band’ laser from CRIS, this will avoid extra losses, still
keeping a suitable hfs resolution (was proven in Po/Ac LIST runs in 2022). See also
the simulate spectrum for 209Bi

The suppression of Fr can vary along the isotopic chain, fluctuations are to be expected.
- Noted, and we have large experience with those Fr’s, should be ok with IDS. Also, in
some cases we can use MR-ToF scanning

The yields of 213-215Bj seem credible. For 216Bi, there are no data in the ABRABLA
database: where did this figure come from?
- Yields for 214-218Bj were measured in 1IS650 (previous slide); also earlier in our ISOLDE
experiments some 15 years ago, during our first measurements up to 218Bi (nuclear
spectroscopy with RILIS), thus we are fully confident for reaching up to 218Bi



TAC comments- 2

It should be noted that the yields of 219-2?0Bj could be very low and can’t be guaranteed. In
the case of low to no yields on these isotopes, are the physics goals of the experiment still
reachable?

« - Fully agree on the comment on ‘very low’ yields for 219220Bj, but our previous IDS studies
showed that we can reliably measure down to 0.01 cps, which is still a factor of 5 below the
rate we expect for 219.220Bj (see previous slide).

-While we are pretty confident to reach 21°Bi, 22°Bi might indeed be not possible, and might
have to be abandoned from our program if nothing/too few is seen. However, while not
endangering the core objectives of this proposal, the ?°Bi measurement represents a
high-risk, high-gain component that should be investigated.

* RILIS with LIST requires considerable input from the RILIS team, and additional setting up
time, but feasible.
-Yes, that's why we requested 2 extra shifts for the LIST setup, also for the setup of narrow-
band CRIS laser. If 229Bi is not possible, we could spend more time on better LIST
tuning/exploration of its modes (and also do more in the PI-LIST mode if find suitable).
We also requested a week “off-line” (before the run) for setting up of this narrow-band laser
(it is mentioned on the safety form).






Isomer separation in 190mi.m2Bj (IRIS@PNPI, Gatchina)

Courtesy A.Barzakh (IRIS@PNPI)
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Table 2. Expected numbers of fission events for BDF of '**™ ™ Bj

Y, 1/s a count, 1/s | Ng/Naipha [19] N, 1/h coincidence events, 1/day

1$mipi (1=3) | 6.00E+01 | 3.5E+01 2.66E-05 3.4 30
ISSm2Bi (1=10)| 3.20E+02 | 1.9E+02 | 4.00E-05 26 220

16 Shifts Requested for BDF measurements of 8Bi at ISOLDE
Measurements to be performed with the Windmill setup



Physics Motivation and goals of the proposal

Goal 1: The N=126 kink problem

Goal 1. Properties of the high-spin isomers 212m1.m2.213mBj and their possible link to the kink in Bi
ground state charge radii at N=126: is the population of the i11/2 neutron orbital a real culprit for the

N=126 kink? T. Naito et al., RIKEN, arXiv:2209.028572v2
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It seems the models ifi which the i11/2 neutron orbital is below g9/2 (or very close to it)
reproduce the kink better, due to enhanced population of the former orbital. If so, this effect
can be probed by charge radii of high-spin isomers in 212213Bj, whose configuration does include an
i11/2 neutron: 212m2Bj [th9/2x((vg9/2)?xvill/2)]18—, 213MBi [Tth9/2x (vg9/2xvill/2)]25/2—, relative to
their gs’s or 212m1Bj, with less or no i11/2 neutrons (e.g. #1?™Bi [Tth9/2xvg9/2)]8—,9-).



