Probing the halo structure of the 2⁻ excited state of ¹⁰Be through a halo-to-halo transfer reaction

J. Chen¹, P. Capel², A. Obertelli³, V. Durant², Y. Ayyad⁴ F. Browne⁵, R. Gernhaeuser⁶, C. R. Hoffman¹, T. Kröll³, W. P. Liu⁷, J. L. Lou⁸, D. K. Sharp⁹, K. Wimmer¹⁰, H. Y. Zhu⁸, B. L. Xia⁸, H. Y. Ge⁸

¹Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

²Institut für Kernphysik, Johannes Gutenberg-Universität at Mainz, D-55099 Mainz, Germany

³Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁴ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

⁵ISOLDE, CERN, CH-1211 Geneva 23, Switzerland

⁶Physics Department, Technical University of Munich, 85748 Garching, Germany

⁷College of Science, Southern University of Science and Technology, Shenzhen, China.

⁸School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

⁹Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK ¹⁰GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany

Nuclei with halo

- One neutron halo, two neutron halo, one proton halo nuclei
- New experimental insights on halo nuclei to challenge theoretical predictions.

Nuclei with halo

- One neutron halo, two neutron halo, one proton halo nuclei
- New experimental insights on halo nuclei to challenge theoretical predictions.

One-neutron halo nucleus ¹¹Be and 2- excited state in ¹⁰Be

-- halo in excited states?

- One halo nucleus ¹¹Be:
- Neutron loosely bound Sn=0.504 MeV
- Larger radius R= 2.91 fm
- ¹⁰Be core + 1 valance n
- g.s. 1/2+

¹⁰Be +
$$n (1s_{1/2}) (\sim 80\%)$$

Τ.	Au	mann	et	al.	Phys	. Rev.	Lett.	84,	35	(2000).	
K	Т	Schn	nitt	et	al i	Phys	Rev Le	<u>+</u> +	108	192701	(201)

¹¹Be g.s.

¹⁰Be

- ¹⁰Be 2- excited state at 6.263 MeV
- \geq 0.549 MeV below S_n
- > may exhibit a dominant configuration with one neutron in the $1s_{1/2}$ orbital.

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.

How to realize a halo-to-halo transfer reaction?

- Low energy => cores of colliding nuclei never come close to each other
- > If the final state exhibits a halo, the cross section should be significantly larger than if it does not.
- The Q value of the reaction stays positive, so the valence neutron in the incoming nucleus should also be loosely bound.
- > To increase the cross section, the magnitude of the tail of its wave function should be as large as possible.

Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.

¹¹Be+⁹Be \rightarrow ¹⁰Be+¹⁰Be*(2-) At around 3-8 MeV in c.m.

Why this reaction?

- The cores of the colliding nuclei never come close to each other, and only the tail of their wave functions contribute to the reaction. low energy reaction
- > If the final state exhibits a halo, the cross section should be significantly larger than if it does not.
- To ensure that the Q value of the reaction stays positive, the valence neutron in the incoming nucleus should also be loosely bound.
- > To increase the cross section, the magnitude of the tail of its wave function should be as large as possible. => ¹¹Be

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2–)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Theoretical three-body model:

- > ¹¹Be (projectile): ¹⁰Be + $n (1s_{1/2})$
- ⁹Be (target): internal structure ignored
- > 2- excited state of ¹⁰Be (final state): 9Be+n if halo exists
- Halo EFT to describe the halo state
 - Leading order (LO): fitted to the halo-neutron binding energy.
 - > Next leading order (NLO): fitted also to the ANC
- > ¹⁰Be-⁹Be core-target interaction:

double-folding of chiral-EFT NN interactions at N2LO

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

P. Capel, D. R. Phillips, and H.-W. Hammer, Phys. Rev. C 98, 034610 (2018)

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2–)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Conclusion of the calculation:

- The cross section scales nearly perfectly with the ANC² of the final state
- The reaction is purely peripheral in the ⁹Be-n and ¹⁰Be-n coordinate
- ANC of 0.745 fm^{-1/2} by Al-Khalili and Arai agrees with No Core Shell Model with Continuum model (NCSMC) which gives an ANC of 0.756 fm^{-1/2}
- An enhance the cross sections by a factor of 4, if halo exists
- Independent of the optical potential

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

Questions raised by the TAC

The requested energies are 0.61 and 1.22 MeV/u. These energies are not possible. The alternatives would be 0.3 MeV/u and 1.55 MeV/u. Could this be addressed in the presentation: is the experiment still feasible at these energies? How precise are the energy requirements?

Answer: The experiment will be feasible at 1.55 MeV/u, which corresponds to 7.7 MeV in c.m. frame. At Ecm=1.5MeV, the cross section becomes very small. Therefore we'll require only one beam energy. The cross section at 7.7 MeV is a little lower than 6 MeV, but the higher energy allows us to use a thicker target. Therefore, the experiment is still feasible.

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2–)

-- Transfer cross sections enhanced by a factor 4, if halo exists

The cross sections scale as the ANC²
 Independent of the optical potential
 The ¹⁰Be core and the ⁹Be target never come close to each other. Excludes the possibility that, instead of the haloneutron transfer, a deeply bound neutron is transferred from the core to the target

Experimental details

6.263 2-

6.179 0+ 5.96 1-

5.58 2+

g.s.

-- MINIBALL+ Silicon detector

- Tag on the 2.895 MeV γ rays.
- The efficiency of MINIBALL for 2.895
 MeV γ ray: ~3%
- The charged particles will be detected by a Compact Disc (CD) double-sided 3.368 2+. silicon strip detector
- ⁹Be target thickness 0.8 mg/cm²
- Beam intensity estimation: elastic scattering cross sections

Beam energy:1.55 MeV/u E_{cm}=7.7 MeV

Rates estimation and requested beam time

-- 12 shifts required

- Estimation based on: Expected beam intensity 10⁶ pps, the target thickness 0.8 mg/cm², the coincidence efficiency of the γ-ray, and the solid angles of the CD detector
- > 12 shifts required: the total events will be more than 5000 counts for the 2- state.

Summary

Probing the halo structure of the 2⁻ excited state of ¹⁰Be through a haloto-halo transfer reaction

- The experimental confirmation of the presence of halos in excited nuclear state is difficult. As such, we a measurement of the ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2–) transfer reaction to investigate the possible existence of a halo in the ¹⁰Be(2–) excited state.
- Based on ADWA calculations, the presence of a halo should enhance the cross section by a factor of 4 compared to other excited states. These calculations are independent of the optical potential used and beam normalization.
- ISOLDE coupled to MINIBAL and a set of CD detector array is the ideal combination to study this reaction experimentally. In total, we request 12 shifts of beam time to measure the ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2–) reaction at 1.55 MeV/u.

Acknowledgement

J. Chen¹, P. Capel², A. Obertelli³, V. Durant², Y. Ayyad⁴ F. Browne⁵, R. Gernhaeuser⁶, C. R. Hoffman¹, T. Kröll³, W. P. Liu⁷, J. L. Lou⁸, D. K. Sharp⁹, K. Wimmer¹⁰, H. Y. Zhu⁸, B. L. Xia⁸, H. Y. Ge⁸

¹Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
²Institut für Kernphysik, Johannes Gutenberg-Universität at Mainz, D-55099 Mainz, Germany
³Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
⁴ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
⁵ISOLDE, CERN, CH-1211 Geneva 23, Switzerland
⁶Physics Department, Technical University of Munich, 85748 Garching, Germany
⁷College of Science, Southern University of Science and Technology, Shenzhen, China.
⁸School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
⁹Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
¹⁰GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany