Probing the halo structure of the 2[−] excited state of 10Be through a halo-to-halo transfer reaction

J. Chen¹, P. Capel², A. Obertelli³, V. Durant², Y. Ayyad⁴ F. Browne⁵, R. Gernhaeuser⁶, C. R. Hoffman¹, T. Kröll³, W. P. Liu⁷, J. L. Lou⁸, D. K. Sharp⁹, K. Wimmer¹⁰, H. Y. Zhu⁸, B. L. Xia⁸, H. Y. Ge⁸

¹Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

 2 Institut für Kernphysik, Johannes Gutenberg-Universität at Mainz, D-55099 Mainz, Germany

 3 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁴ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

⁵ISOLDE, CERN, CH-1211 Geneva 23, Switzerland

⁶ Physics Department, Technical University of Munich, 85748 Garching, Germany

⁷College of Science, Southern University of Science and Technology, Shenzhen, China.

⁸ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

⁹Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK ¹⁰GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany

Nuclei with halo

- One neutron halo, two neutron halo, one proton halo nuclei
- **New experimental insights on halo nuclei to challenge theoretical predictions.**

Nuclei with halo

- One neutron halo, two neutron halo, one proton halo nuclei
- New experimental insights on halo nuclei to challenge theoretical predictions.

One-neutron halo nucleus ¹¹Be and 2- excited state in ¹⁰Be

-- halo in excited states?

- One halo nucleus ¹¹Be:
- Neutron loosely bound Sn=0.504 MeV
- Larger radius R= 2.91 fm
- $10B$ e core + 1 valance n
- \blacksquare g.s. $1/2^+$

$$
^{10}\text{Be} + n (1s_{1/2}) \ (\sim 80\%)
$$

¹¹Be g.s.

 $10Be$

- $10B$ e 2- excited state at 6.263 MeV
- ≥ 0.549 MeV below S_n
- \triangleright may exhibit a dominant configuration with one neutron in the $1s_{1/2}$ orbital.

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.

How to realize a halo-to-halo transfer reaction?

- \triangleright Low energy => cores of colliding nuclei never come close to each other
- \triangleright If the final state exhibits a halo, the cross section should be significantly larger than if it does not.
- \triangleright The Q value of the reaction stays positive, so the valence neutron in the incoming nucleus should also be loosely bound.
- \triangleright To increase the cross section, the magnitude of the tail of its wave function should be as large as possible.

Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.

11 Be+⁹Be \rightarrow 10 Be+ 10 Be*(2-) At around 3-8 MeV in c.m.

Why this reaction?

- \triangleright The cores of the colliding nuclei never come close to each other, and only the tail of their wave functions contribute to the reaction. \longrightarrow low energy reaction
- \triangleright If the final state exhibits a halo, the cross section should be significantly larger than if it does not.
- \triangleright To ensure that the Q value of the reaction stays positive, the valence neutron in the incoming nucleus should also be loosely bound. \longrightarrow ¹¹Be
- \triangleright To increase the cross section, the magnitude of the tail of its wave function should be as large as possible. \rightarrow ¹¹Be

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2−)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Theoretical three-body model:
Reeping the binding energy

- ≥ 11 Be (projectile): 10 Be + *n* (1s_{1/2})
- \triangleright ⁹Be (target): internal structure ignored
- 2− excited state of ¹⁰Be (final state): 9Be+n if halo exists
- \triangleright Halo EFT to describe the halo state
	- \triangleright Leading order (LO): fitted to the halo-neutron binding energy.
	- \triangleright Next leading order (NLO): fitted also to the ANC
- \triangleright ¹⁰Be-⁹Be core-target interaction:

double-folding of chiral-EFT NN interactions at N2LO

P. Capel, D. R. Phillips, and H.-W. Hammer, Phys. Rev. C 98, 034610 (2018)

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2−)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Conclusion of the calculation:

- \triangleright The cross section scales nearly perfectly with the ANC²of the final state
- \triangleright The reaction is purely peripheral in the ⁹Be-n and ¹⁰Be-n coordinate
- ANC of 0.745 fm−1/2 by Al-Khalili and Arai agrees with No Core Shell Model with Continuum model (NCSMC) which gives an ANC of 0.756 fm^{-1/2}
- \triangleright An enhance the cross sections by a factor of 4, if halo exists
-

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

Questions raised by the TAC

The requested energies are 0.61 and 1.22 MeV/u. These energies are not possible. The alternatives would be 0.3 MeV/u and 1.55 MeV/u. Could this be addressed in the presentation: is the experiment still feasible at these energies? How precise are the energy requirements?

Answer: The experiment will be feasible at 1.55 MeV/u, which corresponds to 7.7 MeV in c.m. frame. At Ecm=1.5MeV, the cross section becomes very small. Therefore we'll require only one beam energy. The cross section at 7.7 MeV is a little lower than 6 MeV, but the higher energy allows us to use a thicker target. Therefore, the experiment is still feasible.

ADWA calculation of ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2−)

-- Transfer cross sections enhanced by a factor 4, if halo exists

 \triangleright The cross sections scale as the ANC² \triangleright Independent of the optical potential \triangleright The ¹⁰Be core and the ⁹Be target never come close to each other. Excludes the possibility that, instead of the haloneutron transfer, a deeply bound neutron is transferred from the core to the target

Experimental details

-- MINIBALL+ Silicon detector

- \triangleright Tag on the 2.895 MeV γ rays.
- \triangleright The efficiency of MINIBALL for 2.895 MeV γ ray: $^{\sim}3\%$
- \triangleright The charged particles will be detected by a Compact Disc (CD) double-sided silicon strip detector
- \triangleright ⁹Be target thickness 0.8 mg/cm²
- \triangleright Beam intensity estimation: elastic scattering cross sections

g.s.

5.96 1-

5.58 2+

6.263 2-

6.179 0+

Beam energy:1.55 MeV/u E_{cm} =7.7 MeV

60 90 θ_{lab} (degree)

Rates estimation and requested beam time

-- 12 shifts required

- \triangleright Estimation based on: Expected beam intensity 10⁶ pps, the target thickness 0.8 mg/cm², the coincidence efficiency of the γ-ray, and the solid angles of the CD detector
- ≥ 12 shifts required: the total events will be more than 5000 counts for the 2- state.

Summary

Probing the halo structure of the 2[−] excited state of ¹⁰Be through a haloto-halo transfer reaction

- \triangleright The experimental confirmation of the presence of halos in excited nuclear state is difficult. As such, we a measurement of the ⁹Be(¹¹Be,¹⁰Be)¹⁰Be*(2−) transfer reaction to investigate the possible existence of a halo in the ¹⁰Be(2−) excited state.
- \triangleright Based on ADWA calculations, the presence of a halo should enhance the cross section by a factor of 4 compared to other excited states. These calculations are independent of the optical potential used and beam normalization.
- \triangleright ISOLDE coupled to MINIBAL and a set of CD detector array is the ideal combination to study this reaction experimentally. In total, we request **12** shifts of beam time to measure the $9Be(^{11}Be,^{10}Be)^{10}Be*(2-)$ reaction at 1.55 MeV/u.

Acknowledgement

J. Chen¹, P. Capel², A. Obertelli³, V. Durant², Y. Ayyad⁴ F. Browne⁵, R. Gernhaeuser⁶, C. R. Hoffman¹, T. Kröll³, W. P. Liu⁷, J. L. Lou⁸, D. K. Sharp⁹, K. Wimmer¹⁰, H. Y. Zhu⁸, B. L. Xia⁸, H. Y. Ge⁸

¹Physics Division, Argonne National Laboratory, Argonne, IL 60439 , USA 2 Institut für Kernphysik, Johannes Gutenberg-Universität at Mainz, D-55099 Mainz, Germany 3 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ⁴ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain 5 ISOLDE, CERN, CH-1211 Geneva 23, Switzerland ⁶ Physics Department, Technical University of Munich, 85748 Garching, Germany ⁷College of Science, Southern University of Science and Technology, Shenzhen, China. ⁸ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ⁹Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK 10 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany