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Nuclei with halo

= One neutron halo, two neutron halo, one proton halo nuclei

= New experimental insights on halo nuclei to challenge theoretical predictions.
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Nuclei with halo

= One neutron halo, two neutron halo, one proton halo nuclei

= New experimental insights on halo nuclei to challenge theoretical predictions.

UE SE  16F ugp g g g 2 | 2 30F' 31F'

0 "0 "o 59 %0 #0 *0 70 |%0

V.
1oN "N 12N nN W m 16“

mN BN UN BN

¢ "C’ }16 21c' 20 23c'
B »g’ g’ Halo may exist in the
= excited states of nuclei
Be -
close to stability
12Li 13Li
One neutron halo nucleus

Proton halo nucleus

O
D Two neutron halo nucleus
O

Possible Halo nucleus



One-neutron halo nucleus 11Be and 2- excited state in 1°Be
-- halo in excited states?

One halo nucleus 1Be:
= Neutron loosely bound Sn=0.504 MeV

= L arger radius R=2.91 fm o ﬁﬁzlﬂ_ —@— / 1s1/2
= 10Be core + 1 valance n —0—0—-0-0—/0p3/2

Op1/2
= g.s. 1/2* @ @ 0s1/2 —0—.—‘——7]0p3/2
@ @
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19Be +n (1s,/,) (~ 80%) " /
‘ 1Be g.s. 108
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10Be 2- excited state at 6.263 MeV

" » 0.549 MeV below S,
» may exhibit a dominant configuration with one
T. Aumann et al. Phys. Rev. Lett. 84, 35 (2000). neutron in the 151/2 orbital.

K. T. Schmitt et al. Phys. Rev.Lett. 108, 192701 (2012). J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)



Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.
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How to realize a halo-to-halo transfer reaction?

» Low energy => cores of colliding nuclei never come close to each other
» If the final state exhibits a halo, the cross section should be significantly larger than if it does not.
» The Qvalue of the reaction stays positive, so the valence neutron in the incoming nucleus should also be loosely

bound.
» To increase the cross section, the magnitude of the tail of its wave function should be as large as possible.



Halo-to-halo transfer at low energies

--An ideal probe of a halo structure in highly excited states of nuclei.
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11Be+’Be=> 19Be+1Be*(2-) At around 3-8 MeV in c.m.
Why this reaction?

» The cores of the colliding nuclei never come close to each other, and only the tail of their wave functions contribute to
the reaction===) low energy reaction
» If the final state exhibits a halo, the cross section should be significantly larger than if it does not.

» To ensure that the Q value of the reaction stays positive, the valence neutron in the incoming nucleus should also be
loosely bound. === 11Be

> To increase the cross section, the magnitude of the tail of its wave function should be as large as possible. == 11Be




ADWA calculation of °Be(''Be,°Be)1%Be*(2-)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Theoretical three-body model:
> 'Be (projectile): 1°Be + n (1s,,)
» Be (target): internal structure ignored

» 2- excited state of °Be (final state): 9Be+n if halo exists

> Halo EFT to describe the halo state

» Leading order (LO): fitted to the halo-neutron

binding energy.

» Next leading order (NLO): fitted also to the ANC

> 10Be-°Be core-target interaction:

double-folding of chiral-EFT NN interactions at N2LO

P. Capel, D. R. Phillips, and H.-W. Hammer, Phys. Rev. C

98, 034610 (2018)

Varying the ANC of the final halo state (1°Be* 2-), while
keeping the binding energy

0.8 , : . |
Halo LO Gaussian (0=1.0 fm) =
06 F Halo LO Gaussian (0=2.0 fm) ===-=: |

Halo Al-Khalili

‘ Non-halo Al-Khalili = = = =
0.4 '\ .

0.2 H" \-

0

uys1/2 [fm /2]

-0.2

-0.4

A r
0.6 | s

-0.8

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)




ADWA calculation of °Be(''Be,°Be)1%Be*(2-)

-- Transfer cross sections enhanced by a factor 4, if halo exists

Conclusion of the calculation:

» The cross section scales nearly perfectly with the
ANC? of the final state

» The reaction is purely peripheral in the °Be-n and
10Be-n coordinate

> ANC of 0.745 fm~Y2 by Al-Khalili and Arai agrees with
No Core Shell Model with Continuum model (NCSMC)
which gives an ANC of 0.756 fm~1/2

» An enhance the cross sections by a factor of 4, if halo
exists

» Independent of the optical potential

J. Al-Khalili and K. Arai, Phys. Rev. C 74, 034312 (2006)

Integrated one-neutron transfer cross sections at
different c.m. energies
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Questions raised by the TAC

The requested energies are 0.61 and 1.22 MeV/u. These energies are not possible.
The alternatives would be 0.3 MeV/u and 1.55 MeV/u. Could this be addressed in
the presentation: is the experiment still feasible at these energies? How precise are
the energy requirements?

Answer: The experiment will be feasible at 1.55 MeV/u, which corresponds to 7.7
MeV in c.m. frame. At Ecm=1.5MeV, the cross section becomes very small.
Therefore we'll require only one beam energy.

The cross section at 7.7 MeV is a little lower than 6 MeV, but the higher energy
allows us to use a thicker target. Therefore, the experiment is still feasible.



ADWA calculation of °Be(''Be,°Be)1%Be*(2-)

-- Transfer cross sections enhanced by a factor 4, if halo exists

> The cross sections scale as the ANC? 100 ¢

» Independent of the optical potential

» The 1°Be core and the °Be target never
come close to each other. Excludes the
possibility that, instead of the halo-
neutron transfer, a deeply bound neutron :
is transferred from the core to the target 0.1 ¢
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Experimental details

-- MINIBALL+ Silicon detector 10Be

» Tag on the 2.895 MeV y rays. 6.263 2-
> The efficiency of MINIBALL for 2.895 6173 O+
MeV vy ray: “3% 5.58 2+
» The charged particles will be detected
by a Compact Disc (CD) double-sided 333 2+ Y

silicon strip detector
> 9Be target thickness 0.8 mg/cm?

» Beam intensity estimation: elastic |

scattering cross sections

Angular coverage:

11-to 46°
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Rates estimation and requested beam time

-- 12 shifts required
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» Estimation based on: Expected beam intensity 10° pps, the target thickness 0.8 mg/cm?, the coincidence

efficiency of the y-ray, and the solid angles of the CD detector
» 12 shifts required: the total events will be more than 5000 counts for the 2- state.
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Summary

Probing the halo structure of the 2~ excited state of 1°Be through a halo-
to-halo transfer reaction

» The experimental confirmation of the presence of halos in excited nuclear state is difficult. As such, we
a measurement of the °Be(11Be,%Be)1%Be*(2-) transfer reaction to investigate the possible existence
of a halo in the 1°Be(2-) excited state.

» Based on ADWA calculations, the presence of a halo should enhance the cross section by a factor of 4
compared to other excited states. These calculations are independent of the optical potential used
and beam normalization.

» ISOLDE coupled to MINIBAL and a set of CD detector array is the ideal combination to study this
reaction experimentally. In total, we request 12 shifts of beam time to measure the
‘Be(!'Be,Be)l%Be*(2-) reaction at 1.55 MeV/u.
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