Production of ²²⁶Ra-implanted high-quality radon sources for detector characterization

72nd Meeting of the INTC - 2023

• Florian Jörg, Hardy Simgen, Christoph Schweiger, Klaus Blaum

> MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

February 08, 2023

Why to search for (WIMP) dark matter

Many hints from Cosmology and Astronomy on its existence Weakly interacting massive particles

Florian Jörg - 72nd Meeting of the INTC

XENONnT Detector 1 / 12

Why do we care about radon?

- ²²²Rn emanates from materials and mixes with LXe
- Dominant background in rare event searches
- ► Radon mitigation → radon detection → radon sources
- Also relevant in other fields (radioprotection, environmental physics, ...)!

New type of radon source: Proof-of-principle study

- Two samples with 5×10^{11} ²²⁶Ra ions (≈ 7 Bq) (2017)
- Off-line implantation using uranium carbide target (1.2×10¹⁸ POT)
- **General purpose separator**
- ▶ Ion beam (30 keV, 3pA), area of about $1 \times 1 \text{ cm}^2$

New type of radon source: Proof-of-principle study

- Two samples with 5×10^{11} ²²⁶Ra ions (≈ 7 Bq) (2017)
- Off-line implantation using uranium carbide target (1.2×10¹⁸ POT)
- **General purpose separator**
- ▶ Ion beam (30 keV, 3pA), area of about $1 \times 1 \, \mathrm{cm}^2$

Simulated implantation profile

- lon range distribution (SRIM) $\mu = 7.9 \text{ nm}, \sigma = 2.3 \text{ nm}$
- + High radon emanation fraction (expectation: 23%)
- + Mechanical stability assessed by wiping test: <1% removal

Florian Jörg - 72nd Meeting of the INTC

Observation of short-lived contaminants

 α -spectrum from 13 weeks after implantation:

► Unwanted isotopes decay with O(weeks) of half-life → no problem

Unexpected ¹³⁹Ce contamination?

- Single γ-emission at 165.9 keV, matching ¹³⁹Ce
- Decay of this activity found with (130 ± 5) days, matching literature value of T_{1/2}(¹³⁹Ce) = 137.6 days
- Present only on Sample B

Alpha spectrometry (Si-PIN)

Implantation confined within opening of holder $(1.9 \, {
m cm})$

α -activity	²²⁶ Ra (4.9 MeV)
Sample A	(8.7 ± 1.9) Bq
Sample B	$(9.1\pm0.7)\mathrm{Bq}$

Gamma spectrometry (HPGe)

0.63 kg p-type HPGe crystal

- 15 mwe at MPIK, active & passive shielding
- N₂-flushed sample chamber ⇒ emanated ²²²Rn removed

Activity (Bq)	Sample A	Sample B
²²⁶ Ra (186 keV)	7.4 ± 0.9	8.4 ± 1.0
Rn-daughters	5.2 ± 0.3	6.0 ± 0.3

Radon emanation

Results

- Measured using low-level, quarz proportional counters
- Very good agreement

Sample	$^{222}\mathrm{Rn}$ emanation
Sample A	$(2.07\pm0.05)\mathrm{Bq}$
Sample B	$(2.00\pm0.05)\mathrm{Bq}$

Emanation vessel

- Sample enclosed in vacuum tight stainless steel vessel
- Aluminum holder for fixation
- Vessel filled with helium (1050 mbar)

Thermal dependence of radon emanation

Used setup

- Emanation vessel placed in thermal bath with 200 mbar Helium
- ²²²Rn emanation is collected on active charcoal trap (LN₂ temperature)

Result

- ²²²Rn is then filled into electrostatic radon monitor
- No temperature variation down to -30°C

Results from full characterization

Activity (Bq)	Sample A	Sample B
Implantation	about 7	about 7
²²² Rn emanation	$2.07\pm0.03_{\rmstat}\pm0.04_{\rmsyst}$	$2.00\pm0.03_{\rmstat}\pm0.04_{\rmsyst}$
γ -spectrometry	$7.4\pm0.1_{\rmstat}\pm0.9_{\rmsyst}$	$8.4\pm0.3_{\rmstat}\pm1.0_{\rmsyst}$
lpha-spectrometry	$8.70 \pm 0.06_{\rm stat} \stackrel{+ 2.0}{_{- 1.8 \rm \; syst}}$	$9.13 \pm 0.10 _{\rm stat} \overset{+0.7}{_{-0.4~\rm syst}}$

Appl.Radiat.Isot. 194 (2023) 110666 & arXiv: 2205.15926

- ▶ Recoil dominated emanation of ²²²Rn → Stable wrt. pressure, temperature, etc.
- Emanation from a bare stainless steel surface
 → Low outgassing of impurities

Applicability of implanted sources:

- Radon detectors and α -spectrometers
- Calibration of large scale LXe detectors!
- Radon mitigation studies (coating)

Florian Jörg - 72nd Meeting of the INTC

Results using ²²⁶Ra implanted stainless steel samples

- $\,{}^{222}$ Rn reduction of pprox 1500 using 5 μ m electroplated copper
- Coating becomes "tighter" ⇒ room temperature annealing?

Activity (Bq)	Sample		Electrolyte
γ -Spectrometry	²²⁶ Ra	Rn-daughters	Rn-daughters
before coating	$8.4{\pm}1.0$	6.0±0.3	$\lesssim 0.012$
after coating	7.7±1.0	7.2±0.4	$0.34{\pm}0.02$

Florian Jörg - 72nd Meeting of the INTC

Proposal for ²²⁶Ra implantation into further samples

Metals: ~10x Stainless steel, 2x Copper, 2x Titanium Materials commonly used in low-background experiments (i.e. cryostats)

Insulators:

2x PTFE, 1x Quarz Light reflectors in LXe TPCs, Proportional counters

Semiconductors:

1x Si, 1x Ge Target materials for dark matter and $0\nu\beta\beta$ searches

lsotope	Target	lon source	Beam
²²⁶ Ra	UC _x	Surface	3 pA
Samples	N _{ions}	Shifts	Protons
			required
20	$3 imes 10^{11}$	12	No

- Default material for coating studies: Stainless steel
- Emanation fraction from diffusion vs. recoil in each material?
- Influence of humidity and temperature?
- Dependence on the gas type (He, N₂, Xe)?
- Emanation into vacuum vs. gas vs. liquid?

Backup slides

How to measure 222 Rn emanation (at MPIK)

- 1. Extraction of 222 Rn e.g. from 226 Ra solution
- 2. Transfer and purification of the sample
- 3. Counting (proportional counters, electrostatic radon monitors) MDA \approx 30 μ Bg

889-893 LO

sot

Sadiat

ppl

- Need reliable ²²²Rn sources
- Radon mitigation using surface coatings

Bonus: Comparison to the PTB sample

		MPIK	РТВ
	Obtained samples	2×SS	$4 \times AI + 4 \times W$
_ Implanted activity		about 7 Bq	0.5 kBq - 1 kBq
uctio	Ion Energy	30 keV	30 keV
²²⁶ Ra source Ionization	²²⁶ Ra source	Produced in UC_x	²²⁶ Ra drop-cast on foil
	Ionization	Surface (3 pA)	Surface & Laser (10 nA)
nts	Emanation process	Recoil	Recoil
eme	Mechanical stab.	\checkmark	\checkmark
asur	Environment	cold, pressure	warm, humidity
Me	Reference	Appl. Radiat. Isot. 194 , 2023	Appl. Radiat. Isot. 181 , 2022

\Rightarrow Very promising source production process!

Models for recoil-driven emanation fraction

Linear model $$\begin{split} \Omega &= \int_{0}^{2\pi} \int_{0}^{\beta_{crit}} \left(\sin\left(\beta\right) \right) d\beta \, d\varphi \\ \Rightarrow \quad F &= \frac{1}{2} \cdot \left(1 - \frac{z_{i}}{R} \right), \text{ for } z_{i} \leq R \end{split}$$

Gaussian and Monte-Carlo model

Florian Jörg - 72nd Meeting of the INTC

Models for recoil-driven emanation fraction

Linear model $$\begin{split} \Omega &= \int_{0}^{2\pi} \int_{0}^{\beta_{crit}} \left(\sin\left(\beta\right) \right) d\beta \, d\varphi \\ \Rightarrow \quad F &= \frac{1}{2} \cdot \left(1 - \frac{z_{i}}{R} \right), \text{ for } z_{i} \leq R \end{split}$$

Gaussian and Monte-Carlo model

Florian Jörg - 72nd Meeting of the INTC

Short-lived isotopes details

lsotope	$\mathrm{N}_{\mathrm{ions}}$	Initial activity	225 β 225 5.9 MeV 221
226 Ra	10^{12}	$\mathcal{O}(10\mathrm{Bq})$	$\operatorname{Ra} \xrightarrow{15 \mathrm{d}} \operatorname{Ac} \xrightarrow{10 \mathrm{d}} \operatorname{Fr}$
$^{225}\mathrm{Ac}$	10 ⁹	$\mathcal{O}(1\mathrm{kBq})$	$\xrightarrow{6.5 \text{ MeV}}{4.9 \text{ min}} {}^{217}\text{At} \xrightarrow{7.2 \text{ MeV}}{32 \text{ ms}} {}^{213}\text{Bi}$
227 Th	107	$\mathcal{O}(1 \operatorname{Bq})$	$\xrightarrow{\beta}{46 \text{ min}} \stackrel{213}{\text{Po}} \stackrel{8.5 \text{ MeV}}{4.2 \mu \text{s}} \stackrel{209}{\text{Pb}}$
228 (Th/Ra)	10 ⁶	$\mathcal{O}(10\mathrm{mBq})$	

5 / 5

Florian Jörg - 72nd Meeting of the INTC

Short-lived isotopes details

lsotope	$\mathrm{N}_{\mathrm{ions}}$	Initial activity	227m, 6.0 MeV 223p, 5.7 MeV 219p
226 Ra	10^{12}	$\mathcal{O}(10\mathrm{Bq})$	$\xrightarrow{19 \text{ d}} \xrightarrow{210 \text{ Ra}} \xrightarrow{11 \text{ d}} \xrightarrow{210 \text{ Rn}}$
^{225}Ac	10 ⁹	$\mathcal{O}(1\mathrm{kBq})$	$\xrightarrow{6.8 \text{ MeV}}{4.0 \text{ s}} \stackrel{215}{\text{Po}} \xrightarrow{7.4 \text{ MeV}}{1.8 \text{ ms}} \stackrel{211}{\text{Pb}}$
227 Th	10 ⁷	$\mathcal{O}(1 \operatorname{Bq})$	$\xrightarrow{\beta}{^{211}\text{Bi}} \xrightarrow{6.6 \text{ MeV}}{^{2.1 \text{ min}}} \xrightarrow{207} \text{Tl}$
228 (Th/Ra)	10 ⁶	$\mathcal{O}(10\mathrm{mBq})$	

5 / 5