Collinear resonance ionization spectroscopy of neutron-deficient Sb (Z=51) isotopes, towards the proton drip line

Kara M. Lynch The University of Manchester

Motivation: One proton outside Z=50

- Sb $(Z=51)$ has one proton outside magic $Z=50$ shell closure
- Simple test of single-particle behaviour predicted by shell model
- In collaboration with nuclear theorists to understand evolution of nuclear structure using:
	- Density Functional Theory
	- *Ab-initio* VS-IMSRG calculations

Motivation: the ¹⁰⁰Sn region

Enthusiastic experimental effort in recent years around ¹⁰⁰Sn and ¹³²Sn

- Motivated by advances in *ab-initio* nuclear theory and computational power
- Measure spins, magnetic and quadrupole moments and charge radii
- Understand evolution of structure in this region of the nuclear chart
- 100 Sn (Z,N=50) is the heaviest self-conjugate doubly-magic nucleus
	- Neighbouring nuclei allow us to test understanding and theoretical description of nuclear properties
	- Extent to which 100 Sn is a good shell closure
	- Extent to which the single-particle picture is correct

Motivation: the magicity of 100 Sn

Large B(E2) values suggest collective picture of neutron-deficient Sn isotopes

- Recent Monte Carlo shell-model calculations suggest breaking of $Z=50$ core [1]
- Charge radii for $104,106$ Sn suggest rapid reduction in collectivity towards 100 Sn [2]
- Doubly-magic nature of 100Sn evidenced by:
	- Extremely large Gamow-Teller strength for beta-decay of 100 Sn [3]
	- Reduction in quadrupole moments and differential charge radii of neutron-deficient In $(Z=49)$ isotopes [4-6]

MANCH

[1] T. Togashi et al. PRL 121 062501 (2018) [2] F.P. Gustafsson, Ph.D. thesis, KUL, (2021) [5] A. Vernon, Ph.D. thesis, UoM (2021) [3] C.B. Hinke et al., Nature 486 341 (2012) [4] C. Ricketts, Ph.D. thesis, UoM (2021) [6] J. Karthein et al. (2023) in preparation

Aims: Neutron-deficient Sb

- Valence-proton analogue to In $(Z=49)$
	- Test the robustness of the closed Sn core from above the shell closure
- Recent COLLAPS measurements from $112-134Sb$ [7]
- Magnetic moments sensitive to structural changes
	- Probe behaviour of shell model orbitals
	- Probe purity of nuclear configurations
- Quadrupole moments provides insight into collectivity away from N=50

[7] S. Lechner et al. PRC 104 014302 (2021)] [8] N. Stone, ADNDT 90, 75 (2005)

Α 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134

4

MANCHESTER

Aims: Towards the proton drip line

- Measure across proton drip line at $105Sb$
	- Measure the change in deformation that occurs when the protons are no longer bound in the nucleus by the nuclear force
	- Lightest place to cross the proton drip line in relatively simple region
- Investigate simultaneously:
	- the role of the valence proton (above the Sn $(Z=50)$ core)
	- the role of the unbound proton (as we cross the proton drip line)
- Request 0.5 shifts to measure yield of 106,105Sb to explore possibility of:
	- Measuring hyperfine structure of proton-unbound 105Sb
	- Studying proton decay of 'proton-emitting' 105Sb with DSS

Collinear resonance ionization spectroscopy

The University of Manchester

Laser ionization scheme

- All laser light available with current CRIS laser systems
	- 217 nm light from frequency-quadrupled injection-seeded Ti:Sa laser (100 MHz) or grating Ti:Sa laser (3 GHz)
	- 560 nm light from pulsed dye laser or new broadly-tunable DPSS laser (405–2600 nm)
	- 1064 nm light from Nd:YAG laser
- 217 nm transition same as COLLAPS work for simple calibration

Laser ionization scheme

- Each isotopes $(>108Sb)$:
	- Scan HFS with high-resolution 217 nm light (100 MHz)
- Low-yield isotopes (107,108Sb):
	- Search for peaks with broadband 217 nm light (3 GHz)
	- Scan HFS with high-resolution 217 nm light (100 MHz)

TAC comments

- No issues foreseen with feasibility
- $106,105$ Sb at limit of production and should be considered a bonus if present
	- Important to do yield measurements to check feasibility of HFS measurements
- Yield estimate in proposal based on 1 μ A proton current, not 2 μ A
- Updated Safety Clearance required due to current beamline upgrade

Status of CRIS upgrade

- New end of the beamline being installed and aligned by CERN survey team
	- Increase efficiency of ion detection and transmission to DSS
	- Installation of field-ionization unit to increase sensitivity
- This proposal can be performed with current CRIS setup
- If $106,105$ Sb yield measurements look promising
	- Submit addendum to measure ^{106,106}Sb with field ionization

Shift request

- Request a LaCx target with RILIS
- 18.5 shifts requested for laser spectroscopy of neutron-deficient Sb
	- Scans of ¹¹²⁻¹²¹Sb necessary throughout run to properly calibrate new data
	- Shift estimate for $107Sb$ based on $78Cu$ measurement (20 ions/s)
- 0.5 shifts requested for yield/background measurements of 106,105Sb
	- Investigate possibility of measuring Sb at proton drip line
- 3 (offline) shifts requested for experimental setup before experiment

Summary

- We propose to measure neutron-deficient Sb $(Z=51)$ isotopes down to $107Sb$ at N=56, towards the proton drip line at 105Sb
- Test the robustness of the closed Sn core from above the shell closure
- Understand the evolution of nuclear structure away from $N=50$
- Provide final piece of the puzzle for studies around 100 Sn
- Yield measurements of $106,105$ Sb will explore feasibility of measuring Sb at the proton drip line

Acknowledgements

K. M. Lynch¹, M. Athanasakis-Kaklamanakis^{2,3}, S. W. Bai⁴, Y. Balasmeh², T. E. Cocolios², R. P. de Groote², C. Fajardo², K. T. Flanagan^{1,5}, S. Franchoo⁶, R. F. Garcia Ruiz⁷, S. Geldhof⁸, G. Georgiev⁶, D. Hanstorp⁹, R. Heinke¹⁰, A. Koszorus^{2,11}, L. Lalanne³, Y. C. Liu⁴, Y. S. Liu⁴, A. McGlone¹, G. Neyens², M. Nichols⁹, F. Pastrana⁷, H. Perrett¹, J. R. Reilly¹, J. Trujillo², B. van den Borne², J. Wessolek¹, S. G. Wilkins⁷ and X. F. Yang⁴

¹The University of Manchester, ²KU Leuven, ³CERN, ⁴Peking University, ⁵Photon Science Institute, ⁶Universite Paris-Saclay, 7Massachusetts Institute of Technology, 8GANIL, 9University of Gothenburg, 10CERN, 11SCK•CEN

