# Probing the fission and radiative decay of the $^{235}$ U + n system using (d,pf) and (d,p $\gamma$ ) reactions

#### Following HIE-ISOLDE Letter of Intent I-224

S. A. Bennett<sup>1</sup>, D. K. Sharp<sup>1</sup>, T. Wright<sup>1</sup>, M. Au<sup>2</sup>, P. A. Butler<sup>3</sup>, A. Camaiani<sup>4</sup>, D. J. Clarke<sup>1</sup>, A. J. Dolan<sup>3</sup>, S. J. Freeman<sup>1,2</sup>, L. P. Gaffney<sup>3</sup>, K. Garrett<sup>1</sup>, S. A. Giuliani<sup>5</sup>, A. Heinz<sup>6</sup>, H. T. Johansson<sup>6</sup>, B. R. Jones<sup>3</sup>, B. Jonson<sup>6</sup>, A. Kawecka<sup>6</sup>, B. P. Kay<sup>7</sup>, J. Klimo<sup>4</sup>, M. Kowalska<sup>2,8</sup>, M. Labiche<sup>9</sup>, I. Lazarus<sup>9</sup>, P. T. MacGregor<sup>2</sup>, B. Marsh<sup>2</sup>, M. Managlia<sup>6</sup>, G. Martínez-Pinedo<sup>10</sup>, T. Nilsson<sup>6</sup>, J. Ojala<sup>3</sup>, B. Olaizola<sup>2</sup>, R. D. Page<sup>3</sup>, O. Poleshchuk<sup>4</sup>, R. Raabe<sup>4</sup>, S. Reeve<sup>1</sup>, B. Reich<sup>2</sup>, A. Rodriguez<sup>2</sup>, S. Rothe<sup>2</sup> and A. G. Smith<sup>1</sup>, H. Törnqvist<sup>6</sup>, A. Youssef<sup>4</sup>.

<sup>1</sup>School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
 <sup>2</sup>ISOLDE, CERN, CH-1211 Geneva 23, Switzerland
 <sup>3</sup>Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK
 <sup>4</sup>KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
 <sup>5</sup>Department of Theoretical Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
 <sup>6</sup>Institutionen för Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg, Sweden
 <sup>7</sup>Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 <sup>8</sup>University of Geneva, Geneva, Switzerland
 <sup>9</sup>STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
 <sup>10</sup>Institut für Kernphysik, Technische Universität Darmstadt, Germany

Spokespersons: Sam Bennett (samuel.bennett@manchester.ac.uk), David Sharp (david.sharp@manchester.ac.uk) and Toby Wright (tobias.wright@manchester.ac.uk) ISOLDE contact: Patrick MacGregor (patrick.macgregor@cern.ch)



The University of Manchester







#### Motivation



Nuclear physics properties of actinides are important for various fields and applications 126 Nuclear data inputs: Alpha-decay Neutron induced fission cross r-process sections **Fission barriers Fission Yields** Fission Neutron induced capture cross ub se au ent beta-de cay sections 50 rp-process Applications and fields: 28 Measurements of fission properties r-process and fission recycling -> of actinides are required isotopic abundancies neutron star Nuclear technologies CNO processes 28 PP chai **Fundamental understanding** 20

S. Bennett, D. Sharp, T Wright et al.

Probing the fission and radiative decay of the <sup>235</sup>U + n system using (d,pf) and (d,pγ) reactions



#### Transfer induced fission in inverse kinematics



The University of Manchester

- Fixed target not possible use radioactive ٠ beam
- Replicate neutron addition by (d,p) reaction •



Escher et al., REVIEWS OF MODERN PHYSICS, VOLUME 84, JANUARY–MARCH 2012

Aim to produce similar Compound Nucleus (CN) state to neutron absorption; can extract reaction cross section  $\sigma$ 

$$\sigma_{n,f}^{A-1}(E_n) = \sigma_{CN}^A(E_n) P_f^A(E^*)$$

Can experimentally determine the probability of the compound nucleus undergoing fission  $P_f(E_{ex})$ 

 $P_f(E_{ex}) = \frac{N_{d,pf}(E_{ex})}{\epsilon_f N_{d,p}(E_{ex})}$ 







## Experimental technique: Radioactive beams in inverse kinematics with HELIOS/ISS



MWPC Exit door Proton ejectile from transfer Light MWPC for fragments timing and Actinide beam B~2.5 T position Heavy fragments measurements Charge Segmented Si array reset foil  $\theta_{Lab}^{Light}$ Heavy FiFI-2 Bragg Solenoidal spectrometer advantages: chamber Superior Q-value resolution • Direct measurement of fission barrier simultaneously • probing below and above S<sub>n</sub> Reduced background contributions • Bragg ionization chamber for Fission fragments are boosted in to a small angle in • fragment energy inverse kinematics and Z Protons are emitted backwards in the lab frame measurement Proton coincidence provides clean event selection. Also, • measured angular distributions ->  $\ell$  of populated state





<sup>238</sup>U(d,pf) with HELIOS, ANL





- Proof of principle experiment performed in 2022, PRL submitted *Bennett et al.*
- 840 (d,pf) events recorded
- Measured fission barrier consistent with neutron-induced measurements





Probing the fission and radiative decay of the  $^{235}$ U + n system using (d,pf) and (d,py) reactions



#### Experimental setup: d,pf



<sup>235</sup>U planned as first measurement

- First measurement via (d,pf) in inverse kinematics •
- Fissile and high fission probability •
- Feasible beam rates •





0.5

0.4

-1.5

-1

-0.5 0

cos(theta\_m)

Coverage of fission array for fission fragment mass and c.m fission angle

Schematic of the experimental setup with example particle trajectories, for states populated above and below the fission barrier, for <sup>235</sup>U(d,p) at 7 MeV/nucleon. The inside of the ISS vessel is represented by the grey shaded regions.

S. Bennett, D. Sharp, T Wright et al.

Probing the fission and radiative decay of the <sup>235</sup>U + n system using (d,pf) and  $(d,p\gamma)$  reactions

**INTC February 2023** 

10

15



### Beam and shift request



| • | Winter   | physics |
|---|----------|---------|
|   | vviiitei | physics |

- Favourable experimental conditions when beam energy is as high as possible
- Array of 64 CD<sub>2</sub> targets, can use 1 mg/cm<sup>2</sup> if beam rate is up to 50% lower than expected
- 20 shifts requested to acquire 1500 fission events and 4x10<sup>3</sup> background (carbon-induced) fission events

|                                                         | $^{235}$ U at 7 MeV/u               | $^{238}$ U at 8.6 MeV/u            |
|---------------------------------------------------------|-------------------------------------|------------------------------------|
| Beam mode                                               | Offline                             |                                    |
| Central magnetic field strength                         | $2.3~\mathrm{T}$                    | $2.5~{ m T}$                       |
| Fission probability at 1st chance                       | 0.68                                | 0.19                               |
| Total fission detection efficiency                      | 0.37                                | 0.31                               |
| Coincident fission detection efficiency                 | 0.015                               | 0.065                              |
| $CeBr_3 \gamma$ detection efficiency at 1 MeV           | 2.5%                                |                                    |
| Si array to $CD_2$ target distance                      | $55 \mathrm{~mm}$                   | $55 \mathrm{~mm}$                  |
| Si array c.m. angular coverage at $E_x = 0$ MeV         | $20^{\circ} \rightarrow 45^{\circ}$ | $25^\circ \rightarrow 46^\circ$    |
| Si array c.m. angular coverage at $E_x = 7 \text{ MeV}$ | $10^{\circ} \rightarrow 34^{\circ}$ | $9^{\circ} \rightarrow 31^{\circ}$ |
| Si array azimuthal angular coverage                     | 70%                                 | 45%                                |
| Beam intensity (out of $UC_x$ target)                   | $5 \times 10^6 \text{ pps}$         |                                    |
| Beam intensity (at experiment)                          | $2.5 	imes 10^5 	ext{ pps}$         | $pprox 10^6 { m ~pps}$             |
| Proposed shifts $CD_2$ target $(0.5 \text{ mg/cm}^2)$   | 10                                  |                                    |
| Proposed shifts C target $(0.5 \text{ mg/cm}^2)$        | 9                                   |                                    |
| Measured $(d,p)$ events                                 | $6.1	imes10^5$                      | $3.5	imes10^5$                     |
| Measured $(d, pf)$ events (singles efficiency)          | $1.5	imes10^3$                      | 840                                |
| Measured $(d, p\gamma)$ events                          | $\sim 1000$                         |                                    |
| Si array instantaneous rate                             | $1.7 	imes 10^4 \ { m s}^{-1}$      |                                    |
| Fission detectors instantaneous rate                    | $300 \ {\rm s}^{-1}$                |                                    |

**Table 1:** Experimental parameters, and estimates of expected count rates projected from the case of the  ${}^{238}\text{U}(d,pf)$  measurement with HELIOS. 'Total' and 'coincident' fission detection efficiency refers to the detection of  $\geq 1$  fragment, and 2 fragments, respectively.



## Experimental setup: $\gamma$ detection

The University of Manchester



Drawings showing the CeBr<sub>3</sub> array situated inside the ISS bore, with 3 concentric rings of 11 individual crystals, read out by silicon photomultipliers. The detectors are situated approximately 150 mm downstream of the  $CD_2$  target. Dimensions in mm.

- γ-rays in coincidence with proton and fission
  - prompt fission γ-rays
- $\gamma$ -rays in coincidence with proton d,p $\gamma$  rays

Considerations:

- Many sources of background in each case use differences in spectra shape at different excitation energies/gating conditions
- For d,pγ rays, detection efficiency must be insensitive to the decay path -> Pulse Height Weighting Technique
- Decay probability sensitive to spin of compound nucleus -> use proton angular distribution measurement

Measurement is parasitic thus ideal for commissioning and to understand capabilities





### Thank you for your attention



Beam-energy dependence



- Beam energy impacts in multiple ways.
  - Transfer cross section
  - Minimum energy of ejectiles maximum excitation energy
- > Drop in energy of 1 MeV/u from proposed 7MeV/u results in a factor of 2 reduction in rate.
- Higher energies result in significant gains.

