β -decay spectroscopy with laser-polarised beams of neutron-rich potassium isotopes

M. Piersa-Siłkowska¹, M. Madurga², M. Kowalska¹, A Korgul³, N. Azaryan¹, M. Baranowski⁴, M. L. Bissell¹, M. J. Chojnacki^{1,5}, J. Christie², A. Fijałkowska³, R. Grzywacz², M. Jankowski^{1,6}, R. Lică⁷, I. Michelon^{1,5}, C. Mihai⁷, M. Pešek¹, M. Stryjczyk⁸, T. P. Treczoks¹, Z. Y. Xu², K. Solak³, W. Poklepa³

¹CERN – ²Univ. Tennessee – ³Univ. Warsaw – ⁴Univ. Poznań – ⁵Univ. Geneva – – ⁶TU Darmstadt – ⁷IFIN-HH – ⁸Univ. Jyväskylä

> Spokespersons: M. Madurga, M. Piersa-Siłkowska Contact person: M. Piersa-Siłkowska

INTC-P-662: 15 shifts with ^{47,49,51}K beams 72nd Meeting of the INTC, 8 February 2023

β decay of spin-polarised nuclei

H. Nishibata et al., PRC 99, 024322 (2019).

β decay of spin-polarised nuclei

- - Spin-polarised parent nucleus
 - ✓ β-γ/n coincidences
 - Spin-parity of states identified

nucleus

β decay of spin-polarised nuclei

 $\beta - \gamma$ coincidences • β-decay angular distribution: β decay of ³¹Na (I^{π}=3/2⁺) $W(\theta) \simeq 1 + AP\cos\theta$ (allowed) "our unique method (...) enables us to **firmly** A – asymmetry parameter. assign the spins of all positive-parity 800 $A = A(I_i, I_f)$ (discrete values excited levels in ³¹Mg below the neutron counts / ns 6000 separation energy at 2.3 MeV" P – polarisation 4000 E_{level} (MeV) in ³¹Mg 2.244 (A = -1.0)200 H. Nishibata et al., PRC 99, 024322 (2019). A = 1P = 1y-ray detectors • Osaka method: ✓ Spin-polarised parent nucleus β-ray detectors $\theta = 0^{\circ}$ ~1.0 $\checkmark \beta - \gamma / n$ coincidences $\theta = 180^{\circ}$ spin-polarized Spin-parity of states identified nucleus

Neutron-rich potassium isotopes: 47,49,51 K (Z =19)

• Ground-state spins and magnetic moments measured at COLLAPS

⁴⁹K: $I^{\pi} = 1/2^+$ $(\pi 2 s_{1/2}^{-1})$

• ~25% mixing with the $\pi 1 d_{3/2}^{-1}$ components in the g.s. wave function of ⁴⁹K ($I^{\pi} = 1/2^{+}$)

J. Papuga *et al.*, PRL 110, 172503 (2013); PRC 90, 034321 (2014).

49,51 K β -decay strength distribution using SDPF-MU

- Largest $1/2^+$ strength: largest contribution of $vs_{1/2}^{-1}$
- Intensity proportional to the depletion fraction of $\nu s_{1/2}^{-1}$
- $3/2^+$ states in ⁴⁹Ca: dominated by $\nu d_{3/2}^{-1}$
- Large $3/2^+$ feeding is only possible due to the substantial fraction (18%) of $\pi d_{3/2}^{-1}$ in the ⁴⁹K g.s.

- Lowest energy transition: $\nu d_{3/2} \rightarrow \pi d_{3/2}$
- Small strength to 1/2⁺ states: indicative of the ⁵¹K g.s. little mixing with $\pi s_{1/2}^{-1}$
- Substantial strength to 5/2⁺ states: corresponding to ν1f_{7/2} → π1f_{7/2}

Identification of each spin-parity channel crucial to study these hypotheses!

49,51 K – previous β -decay studies

Monika Piersa-Siłkowska (CERN), M. Madurga (Univ. Tennessee): INTC-P-662

Exp

Theory

Experimental details

Experimental details: the VITO beamline

VITO beamline

CAD model: N. Azaryan

Experimental details: the VITO beamline

- VITO beamline
- K atoms: D2 line at 766.49 nm
- ^{47,49}K polarisation established (βNMR campaigns, IS666, 2022)

CAD model: N. Azaryan

• Helmholtz coils: 800-1200 Gauss

Fabrication: F. Garnier (CERN) + Uni. Warsaw

Design and simulations: F. Saeidi (ILSF)

- Helmholtz coils: 800-1200 Gauss (fabricated at CERN, Jan 2023)
- Implantation host: KCl crystal

42.

41.0 40.5 40.0 39.5

39.0

38.5

38.0

3-decay asymmetry (%)

-1.0

-1.2

Doppler voltage (V)

-i.4

8

-0.8

-0.6

e e

- Helmholtz coils: 800-1200 Gauss (fabricated at CERN, Jan 2023)
- β-decay spectroscopy station:
 - γ-ray detectors
 (IFIN-HH Clovers)
 - neutron TOF arrays
 (INDiE and NEXT)
 - β-particle detectors
 (plastic scintillator + SiPMs)
 - ► DAQ: XIA PIXIE-16

- Helmholtz coils: 800-1200 Gauss (fabricated at CERN, Jan 2023)
- β-decay spectroscopy station:
 - γ-ray detectors
 (IFIN-HH Clovers)
 - neutron TOF arrays
 (INDiE and NEXT)

R. Grzywacz et al., IS662 (INTC-P554), IS705 (INTC-P614);

S. Neupane, J. Heideman, R. Grzywacz et al., NIM A 1020, 165881 (2021); PRC 106, 044320 (2022)

- Helmholtz coils: 800-1200 Gauss (fabricated at CERN, Jan 2023)
- β-decay spectroscopy station:
 - > γ -ray detectors (IFIN-HH Clovers) $\epsilon = 0.8\% / \text{Clover} (1 \text{ MeV}, 5 \text{ cm})$
 - > neutron TOF arrays (INDiE and NEXT) $\epsilon = 6\%$ for 1 MeV (INDiE, 26 bars) $\epsilon = 11\%$ for 1 MeV (NEXT, 14 bars)
 - β-particle detectors
 (plastic scintillator + SiPMs)
 ε = 20-25% / det.
 - > DAQ: XIA PIXIE-16

- Helmholtz coils: 800-1200 Gauss (fabricated at CERN, Jan 2023)
- β-decay spectroscopy station:
 - > γ -ray detectors (IFIN-HH Clovers) $\epsilon = 0.8\% / \text{Clover} (1 \text{ MeV}, 5 \text{ cm})$
 - > neutron TOF arrays (INDiE and NEXT) $\epsilon = 6\%$ for 1 MeV (INDiE, 26 bars) $\epsilon = 11\%$ for 1 MeV (NEXT, 14 bars)
 - β-particle detectors
 (plastic scintillator + SiPMs)
 ε = 20-25% / det.
 - DAQ: XIA PIXIE-16

Coincidences:

Asymmetry measurements

✓ β particles: plastic at 0° and 180°

 $\checkmark~\gamma$ rays:

HPGe at 90 $^\circ$ and 180 $^\circ$

✓ neutrons:
 NEXT at 90° and
 VANDLE at 180°

Beam time request

Goal: measure β -decay asymmetries with a precision that enables to distinguish between different discrete asymmetry values (depending on the spin change)

[+ investigate γ -ray and neutron emission asymmetries]

Isotope	Half-life (s)	$P_n \ (\%)^*$	Yield (ions/ μ C)	Requested shifts
⁴⁷ K	17.50(24)	-	$1\! imes\!10^7$	• 2 shifts for establishing laser polarisation
				and optimising laser-atom overlap;
				 0.5 shift with laser polarisation;
				 0.5 shift without laser polarisation;
⁴⁹ K	1.263(50)	86(9)	$1\! imes\!10^5$	• 0.5 shift for optimising laser polarisation
				 2 shifts with laser polarisation;
				 0.5 shift without laser polarisation
⁵¹ K	0.365(5)	65(8)	4.5×10^{3}	• 0.5 shift for optimising laser polarisation
				 8 shifts with laser polarisation
				• 0.5 shift without laser polarisation

* M. Birch et al., Nucl. Data Sheets 128, 131 (2015).

"Technical advisory committee does not foresee any technical issues with this proposal."

Neutron-rich potassium isotopes for commissioning the β -decay spectroscopy experiment at VITO using laser-polarised beams

✓ 47,49 K were already polarised at VITO (2022)

✓ Known (and appropriate) properties of the emitted radiation from 47,49,51 K

- Perfect cases to demonstrate the capability to measure β-decay asymmetry in coincidence with delayed radiation and, thus, to determine spins and parities of excited states
 - > High selectivity of the β decay + B(GT) distributions for individual spins
 - Experimental information about pure/mixed nature of the g.s. wave functions and particle-hole excitations of the ⁴⁸Ca core
 - > Robust experimental dataset to test βn emission models (neutron angular momenta)

Beam time request: 15 shifts with UC_x target, surface ionisation, and potassium mass marker.

This project has received funding from the European's Union Horizon 2020 Research and Innovation Programme under grant agreement number 101032999, project "BeLaPEx"

