#### **Rebondable Fan Ins**

#### S. Eckert<sup>1</sup>, T.Ehrich<sup>1</sup>, A.Fauler<sup>2</sup>, K.Jakobs<sup>1</sup>, S.Kühn<sup>1</sup>, U.Parzefall<sup>1</sup>, A.Walz<sup>1</sup>

<sup>1</sup> University of Freiburg



<sup>2</sup> Freiburg Materials Research Centre





**bmb+f** - Förderschwerpunkt

ATLAS

Großgeräte der physikalischen Grundlagenforschung

### Motivation



- During R&D phase many different fan ins needed
- Each flavour only needed few times

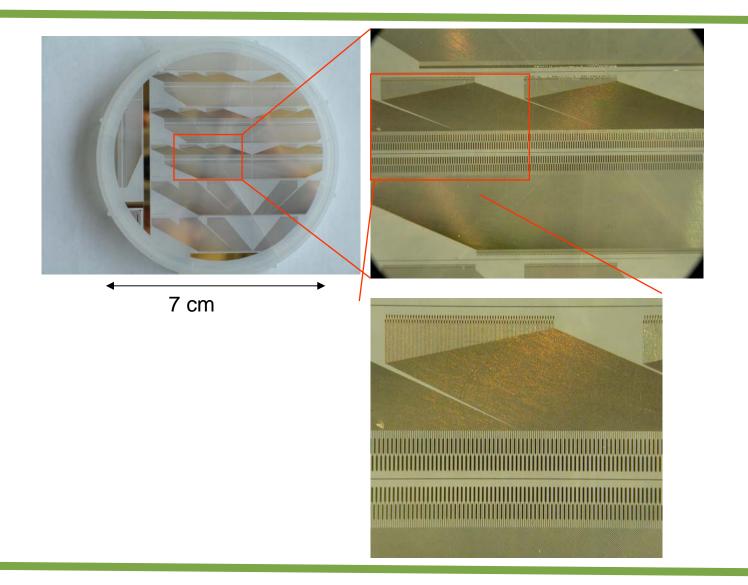
too expensive to manufacture in industry (dominated by setup costs)

Simon Eckert, University of Freiburg

8th RD50 Workshop in Prague June 25th – 28th 2006



- Make flexible and easily adoptable approach
  - Automate layout process
  - Use AutoCAD macro language


#### Features



- Automagically lays out fan in design for different:
  - Pitches
  - Bond pad separation
  - Number of bond pads
  - Rebondable and "normal" fan ins
  - Pad size (especially in trace direction for rebondability)
  - Relative position of pad rows

#### First all-Au sample





Simon Eckert, University of Freiburg

8th RD50 Workshop in Prague June 25th – 28th 2006

## Production



- Mask design in Freiburg
- Lithographic mask made in industry
- Fan in production "in house" (Freiburg Materials research centre, A.Fauler)
- Metallisation is done through sputtering process
- Different metals available (2 in one go)
- Photolithographic lift off technique

# Materials I



- Very first try on Alumina substrate (Al<sub>2</sub>O<sub>3</sub>)
  - $\rightarrow$  problems with photo resist
  - → impossible to see when photo resist is properly etched
  - $\rightarrow$  very poor trace adhesion
- Changed to glass substrate (thanks to Miguel Ullán and CNM)
  - → First results on glass look promising, see next slide

# Materials II



- Different metallisations possible
  - First try: Au traces (on thin Ti for adhesion)
    - Trace thickness: ~20nm Ti & ~330nm Au
    - Hard to bond at room temperature
    - Al-Au interface not stable ("purple plague")
    - High Z  $\rightarrow$  long term activation during irradiation
  - Next try: Ni traces (without Ti adhesion layer)
    - Should have better bondability
    - Bond is made through ~50nm thin Au layer
    - Al-Ni interface stable
    - But also high Z
  - Future?: Al traces
    - Minimise Z as far as possible

# TODO



- Systematic bond tests
- Design a frame to clamp hybrid and detector part
  - Needs extremely stable alignment after bonding
  - Integrate cooling into frame
- Assemble prototype modules...