Charles University Prague Institute of Particle and Nuclear Physics

Tests Of Laser In Silicon Detectors

Peter Kodyš, Zdeněk Doležal, Jan Brož, Pavel Řezníček, Zbyněk Drásal, Peter Kvasnička

Progress of laser tests in Prague

- 1. Testing algorithms of strip detectors tuned
- 2. Set of standard tests and analyses: focusing, strip response, charge sharing
- 3. Different wavelengths: 650nm and 1060nm used
- 4. Angle (skew) scans
- 5. Optical head for direct beam power measurements in progress
- 6. Simulations of laser beam in Si (Zbyněk Drásal next talk)
- 7. Deeper understanding of laser beam interaction with Si detectors
- 8. Preparing analysis macros

Charles University

Prague

Testing procedures of strip detectors

The test system integrates:

- Short pulsed lasers 650 and 1060 nm (CERN)
- DAQ (VME NI PCI-VME)
- oscilloscope (GPIB)
- pulse generator (GPIB)
- positioning stages 3D-2R (USB)
- 2 power supplies (USB-RS232)

ROOT based software allows

- High voltage (bias) control
- Focusing algorithms rough, fine
- Position scans
- Timing scans
- Angle scans including deep focusing
- Environmental monitoring (temperature, humidity, power drops, bias drops, remote access and full processing from any place (VNC), automatic emergency system)

Charles University

Prague

Set of standard tests and analyses: focusing, strip response, charge sharing

Simulations of laser beam in Si

Subject of a separate talk by Zbyněk Drásal

Different wavelengths: 650nm and 1060nm

Angle (skew) scans (2)

Tilt laser beam Focusing to top surface from inside (deep focusing)

Optical head for power monitoring and reflectance measurement

- 1. Mechanical design and manufacturing done
- 2. Readout electronics under construction

Deeper understanding of laser beam interaction with Si detectors

Surface structure on strip

Surface structure on bond pad

Deeper understanding of laser beam interaction with Si detectors

Deeper understanding of laser beam interaction with Si detectors

Hamatsu

Deeper understanding of laser beam interaction with Si detectors

Deeper understanding of laser beam interaction with Si detectors CiS

Response on strip with residuum charge sharing in protecting layer

Response on bond pad with no protection layers

Deeper understanding of laser beam interaction with Si detectors

- Other possible effects influencing laser tests:
 - For 1060nm wavelength thickness of silicon substrate changes: minimamaxima on interferences give about 30% changes in charge collection in ¹/₂ wavelength inside Si (~150nm) – relevant only in large area scans
 - For 650nm incomplete charge collection within integration time charge is created in layer <4µm in weak electric field – dependent also from properties of coating layers (electric field gradients, conductivities, lost charge vacancies,...)
 - Irradiated detectors: additional diffusions, inhomogeneities

Status of laser tests technique (1)

A well-defined and cheap method of detector testing is now available.

Main benefits:

- cheaper than standard test beams with real particles
- lightweight arrangement allowing easy transport
- generally available in labs
- good repeatability and reproducibility of results

Charles University

Prague

Status of laser tests technique (2)

Main features and capabilities:

- fine-tuning of readout electronics, timing of signals and DAQ software tuning (algorithms, sequences, delays)
- interstrip or interpixel response with micron resolution
- response measurement linearity, dependence on other conditions, calibrations
- measurement of pulse shapes for injected charge ranging from fractions to thousands MIPs
- injection of extra large charge for regeneration time measurement or assessment of electronics damage
- measurement of high-rate charge injection (double pulse)
- depletion voltage measurement

Status of laser tests technique (3)

Main features and capabilities:

- signal / noise ratio
- thermal dependencies of properties
- all previous tests also for irradiated modules (sensor or/and FE)
- thickness homogeneity of sensor with precision in 100nm range
- in combination with simulations, good insight in silicon detectors response at theoretical level