Annealing effects on p+n junction 4H-SiC diodes after very high neutron irradiation

<u>Francesco Moscatelli^{1,4*}</u>, Andrea Scorzoni^{2,1,4}, Antonella Poggi², Mara Bruzzi³, Silvio Sciortino³, Stefano Lagomarsino³, and Roberta Nipoti²

¹CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna, Italy
² DIEI, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
³Dipartimento di Fisica, Polo Scientifico di Sesto Fiorentino, Via Sansone 1 Firenze Italy
⁴INFN Perugia, via pascoli 1 06123 Perugia, Italy

This work was partially supported by the INFN SiCPOS project and by the CERN RD50 Collaboration

Università degli Studi di Perugia

Outline

- Introduction
- Samples: OPAL and SiCPOS
- IV and CV measurements after annealing on devices OPAL
- Summary of measurements on irradiated SiCPOS devices before annealing
- CC and I-V measurements after annealing on SiCPOS devices
- Conclusions and future developments

Concentration of some defects produced by neutrons decreases as a function of the annealing temperature*. In particular defects:

- E_i at E_c -0.5 eV (decreases until 400°C than expires)

 $-Z_1/Z_2$ at E_c-0.62 /0.68 eV (decrease until 900°C than expire)

-Effects on E_c -0.82, E_c -1.16 and E_c -1.5 eV?

We want to analyze annealing effects on current, capacitance and charge collection

* X. D. Chen et al. JAP 94 (5) pp. 3004-3010, Sep 2003.

Università degli Studi di Perugia

Introduction

J. Appl. Phys., Vol. 94, No. 5, 1 September 2003

SiC p⁺/n samples

Epi CREE: 5 μ m epi doping = 3×10^{15} cm⁻³

 p^+ doping (0.2 µm) = 6×10¹⁹ cm⁻³

and CC

 p^+ doping (0.4 µm) = 4×10¹⁹ cm⁻³

Called SiCPOS

To analyze current

No JTE

Called OPAL To analyze current and V_{dep}

Irradiation with neutrons

OPAL	1×10 ¹⁴ 1 MeV n/cm ²		7×10 ¹⁴ 1 MeV n/cm ²		3×10 ¹⁵ 1 MeV n/cm ²	1×10 ¹⁶ 1 MeV n/cm ²
SiCPOS	1×10 ¹⁴	3×10 ¹⁴	7×10 ¹⁴	1.5×10 ¹⁵	3×10 ¹⁵	1×10 ¹⁶
	1 MeV	1 MeV	1 MeV	1 MeV	1 MeV	1 MeV
	n/cm ²	n/cm ²	n/cm ²	n/cm ²	n/cm ²	n/cm ²

Università degli Studi di Perugia

8th RD50 Workshop Prague June 25-28 2006 **OPAL Diodes: IV measurements**

Before annealing. The samples become intrinsic after a fluence of some 10^{14} n/cm^2 .

Università degli Studi di Perugia

Reverse voltage: the current decreases as a function of the fluence

10¹⁴

Current Density (A /cm²)

10⁻⁹

10⁻¹⁰

Fluence (n / cm^2)

before irradiation

@ 100 V

1 T

10¹⁵

10¹⁶

OPAL:I-V after 80°C annealing

Current density or decreases or is constant as a function of the annealing time even at 80°C.

Fluence 1×10¹⁴ n/cm²

Epi: 5 μm Diameter: 350 μm

I-V after annealing at 200°C

Average current decreases after an annealing at 200°C for 30 minutes and then remain almost constant.

Epi: 5 µm

OPAL: C-V measurements

• After a fluence of 1×10^{14} n/cm² the doping decreases at 1.5×10^{15} cm⁻³.

Università degli Studi di Perugia

6x10⁻¹² 100 kHz 5x10 40 kHz Capacitance (F) 10 kHz 4x10⁻¹² 3x10⁻¹² 2x10⁻¹² 5 10 15 20 25 30 0 Voltage (V)

• Capacitance is constant as a function of the frequency. Fluence = 1×10^{14} n/cm².

8th RD50 Workshop Prague June 25-28 2006

OPAL: CV after annealing 80°C

Depletion voltage is almost constant as a function of the annealing time at 80°C.

• Average value considering 6 diodes

CV after annealing at 200°C

• After annealing at 200°C V_{dep} increases slightly.

Università degli Studi di Perugia

Epi: 5 µm

Measurements on SiCPOS samples

Epi: 55 μ m epi doping = 1.6×10¹⁴ cm⁻³

Università degli Studi di Perugia

CC measurements on reference

3000 e⁻ @ 200 V and 3100 e⁻ @ 600 V for diode with D=1 mm

I-V after irradiation

Reverse current density decreases after irradiation!

Diameter = 1 mm

Università degli Studi di Perugia

C-V after irradiation

Capacitance is constant. The material turns to intrinsic

Diameter = 0.4 mm

8th RD50 Workshop Prague June 25-28 2006

CC vs fluence

Diameter = 1 mm

- CC is high until some 10¹⁴ n/cm²
- CC decreases sharply after 10¹⁵ n/cm². Only 130 e⁻ after 10¹⁶ n/cm²
- Presently SiC is not radiation hard as we thought of!

I-V measurements after 80°C annealing

Average current decreases after an annealing at 80°C for 30 minutes and then remain almost constant.

Università degli Studi di Perugia

8th RD50 Workshop Prague June 25-28 2006

CC measurements after 80°C annealing

After annealing at 80°C we observe a slight increase of the collected charge, in the range of the experimental error.

No recovery of the damage at 80°C and then at RT!

^{8th} RD50 Workshop Prague June 25-28 2006 I-V and CC after annealing at 400°C

After 30 min at 400°C the current furtherly decreases and the CC increases of 500 e⁻ (from 1400 e⁻ to 1900 e⁻).

Università degli Studi di Perugia

Conclusions

• <u>Current</u>

- Currents @ 500 V are very low even after fluences of the order of 10^{16} n/cm².
- Currents decrease after annealing at 80°C, 200°C and 400°C.
- <u>Depletion voltage</u>
 - remain almost constant as a function of the annealing at 80°C. There is a slight increase after an annealing at 200°C
- <u>CC</u>
 - is good until fluences of the order of some 10^{14} n/cm². Before annealing , for fluences of the order of 10^{15} - 10^{16} n/cm² the CC is very low.
 - After annealing at 80°C we observe a slight increase of the collected charge, in the range of the experimental error. No recovery of the damage!
 - After annealing at 400°C for 30 min we obtain an increase of the CC of the order of 500 e⁻ for the sample irradiated with 7×10^{14} n/cm².

CC and I-V after annealing at 200°C

