Mesaurements of Trapping Time Constants in Neutron Irradiated Pad Detectors

Jens Weber, Reiner Klingenberg Experimental Physics IV University of Dortmund

8th RD50 Workshop 25 - 28 March 2006 Praha all LHC Experiments and probably all SLHC experiments use silicon for their tracker detectors

trapping of charge carriers is one of the main issues for the design of new sensors for SLHC since reducing charge collection efficiency

data on collection behavior are needed for:

- detector simulation
- optimization of operation condtitions

Charge Collection in Silicon Sensors

 charge dQ induced on electrons by drifting charge q

$$dQ = \frac{q(t)}{d} dx = \frac{q(t)}{d} v(t) dt$$

• trapping leads to charge carrier loss

$$dq(t) = -\frac{1}{\tau_{eff}} q(t) dt$$
, with $\tau_{eff} = \tau_{eff}(\Phi_{eq})$

• resulting (measured) signal current

$$i_m(t) = \frac{q_0}{d} v(t) \exp(-t/\tau_{eff})$$

 injection with short range laser from one side allows to distinguish between electron and hole signal

Measurement Setup

- 672nm red laser (3.6 μ m absorption length, FWHM = 44ps),
- applicable bias voltage range 0-2000V
- fast pulse amplifier (10x, 100 kHz 1.8 GHz), (current sensitive!)
- oscilloscope (Tektronix TDS 784D, band width 1 GHz)
- rise time of system (incl. detector) about 1 ns
- PC readout system (LabVIEW)
- cooling system (-20°C +20°C, rms 0.2°C)

Measurement Setup

diode lies with n-side on gold-plated metal, tongue presses on p-side setup inside metal box

- peltier cooling
- (gaseous) N2 to keep DUT dry

Exponentiated Charge Crossing (ECC)

exponentiated charge

$$Q_{\exp} = \int i_m(t) \exp(+t/\tau) dt$$

from differnt $V_{_{bias}} \, are plotted \, vs. \, 1/\tau$

 $1/\tau_{_0}$ is obtained from mean of intersection points of line pairs

Samples

- 5mm \times 5mm n-bulk pad detector
- thickness 250-300^{*}µm
- DOFZ silicon (ATLAS type)
- $\langle 111 \rangle$ crystal orientation
- neutron irradiation at TRIGA reactor, Ljubljana
- fluence range from $0.1 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$ to $4 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$ \downarrow up to $0.6 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$

We kindly acknowledge the help by Gregor Kramberger for irradiation

* O Krasel et. al. "Measurement of Trapping Time Constants in Proton Irradiated Silicon Pad Detectors", IEEE Trans. Nucl. Sci. 51 (2004) 3055-3062

Results so far...

Signal Examples

Comparability of Results

comparision between trapping times

• Krasel – this work:

$$\begin{array}{ll} & \text{O Krasel} & \text{this work} \\ \tau_{_{0,e}}\,(0.6\times10^{15}~n_{_{eq}}/\text{cm}^2)\text{:} & 5.77\pm0.25 & 5.33\pm0.29 \end{array}$$

• this work (examples): sample 1 sample 2

$$\begin{split} \tau_{_{0,e}} \, (0.3 \times 10^{15} \ n_{_{eq}}/cm^2) & 12.04 \pm 0.15 \\ \tau_{_{0,h}} \, (0.8 \times 10^{15} \ n_{_{eq}}/cm^2) & 5.75 \pm 0.55 \\ \end{split} \ 5.76 \pm 0.51 \end{split}$$

Results (O Krasel)

Sample	Φ[*]	d [µm]	$U_{dep}[V]$	τ,e [ns]	τ,h [ns]
Set R	0.1	300	139.8 ± 5.9	$\textbf{22.59} \pm \textbf{1.88}$	25.99 ± 2.19
Set V	0.2	300	$\textbf{249.0} \pm \textbf{2.1}$	13.41 ± 1.29	9.23 ± 0.69
Set n2	0.3	250			
Set n16	0.3	250			
Set T	0.4	300	479.7 ± 2.2	7.56 ± 0.78	$\textbf{4.15}\pm\textbf{0.33}$
Set S	0.6	300	620 ± 12	5.77 ± 0.25	
Set n8	0.6	250			
Set n3	0.6	250			
Set n12	0.8	250			
Set n13	0.8	250			
Set n0	0.9	250			

* => $10^{15} n_{eq}^{2}/cm^{2}$

error Φ : 10%

Results (Overview)

Sample	Φ [*]	d [µm]	$U_{dep}[V]$	τ,e [ns]	τ,h [ns]
Set R	0.1	300	139.8 ± 5.9	$\textbf{22.59} \pm \textbf{1.88}$	25.99 ± 2.19
Set V	0.2	300	249.0 ± 2.1	13.41 ± 1.29	9.23 ± 0.69
Set n2	0.3	250	196.4 ± 6.5	12.04 ± 0.15	10.28 ± 0.92
Set n16	0.3	250	176.3 ± 2.7	11.63 ± 0.86	8.05 ± 1.16
Set T	0.4	300	479.7 ± 2.2	$\textbf{7.56} \pm \textbf{0.78}$	$\textbf{4.15} \pm \textbf{0.33}$
Set S	0.6	300	620 ± 12	5.77 ± 0.25	
Set n8	0.6	250	$\textbf{371.8} \pm \textbf{3.6}$	(7.70 ± 0.71)	
Set n3	0.6	250	$\textbf{361.4} \pm \textbf{5.4}$	$\textbf{5.33} \pm \textbf{0.29}$	
Set n12	0.8	250	546 ± 13	$\textbf{4.85} \pm \textbf{0.16}$	5.75 ± 0.55
Set n13	0.8	250	$\textbf{369.7} \pm \textbf{8.5}$	$\textbf{4.68} \pm \textbf{0.20}$	5.76 ± 0.51
Set n0	0.9	250	440.3 ± 6.3	3.07 ± 0.20	4.65 ± 0.44
	1	I.	1		1

 $* => 10^{15} n_{eq}^{2}/cm^{2}$

error Φ : 10%

Trapping Time – Fluence Dependence

Trapping Time – Fluence Dependence

 $= \beta_{n,e} = (3.11 \pm 0.12) \cdot 10^{-16} \text{ cm}^2/\text{ns}, \qquad \beta_{n,b} = (3.61 \pm 0.20) \cdot 10^{-16} \text{ cm}^2/\text{ns}$

Tried to measured diodes with fluences above $1 \times 10^{15} n_{eq}^{2}$ /cm² but breakdown voltage too low

$\Phi\left[{ m n}_{_{ m eq}}/{ m cm^2} ight]$	$\mathrm{U}_{_{bd}}\left[V ight]$	
$\begin{array}{c} 2\times10^{15} \\ 2\times10^{15} \end{array}$	480 470	► U _{dep} > 500V
$3 imes 10^{15}$	350	$\Rightarrow \tau$ not determinable
$3 imes 10^{15}$	350	
$4 imes 10^{15}$	340	
$4 imes 10^{15}$	340	

possible solution: • determine trapping time with underdepleted diodes?

• new irradiation with thinner diodes (material)?

Summary

• τ for electrons and holes up to $1 \times 10^{15} n_{eq}^{2}$ determined

 $\beta_{n,e} = (3.11 \pm 0.12) \cdot 10^{-16} \text{ cm}^2/\text{ns}, \qquad \beta_{n,h} = (3.61 \pm 0.20) \cdot 10^{-16} \text{ cm}^2/\text{ns}$

- no $\tau {\rm 's}$ above 1 $\times 10^{15}~n_{_{eq}}/cm^2$ due to breakdown voltage
 - underdepleted analysis? thinner samples?

Outlook

- some annealing studies with neutron sample
- measurement of samples with high proton irradiation
- signal studies (TCT) on irradiated pixel structures

