Defect kinetics in Epi/Cz silicon after Co^{60} - γ irradiation

I. Pintilie*, G. Lindstroem**, E. Fretwurst**, F. Hoeniger and B.G. Svensson***

* National Institute of Materials Physics, Bucharest, Romania ** Institute of Experimental Physics-University of Hamburg, Hamburg, Germany *** Oslo University, Dept.of Physics, Oslo, Norway *Motivation*- The divacancy annealing mechanisms proposed for STFZ after low irradiation doses cannot explain the results obtained in Epi/Cz diodes after high doses of irradiation

<u>EPI-Silicon wafers:</u> <111>, n/P, 50 Ωcm, 50 μm on 300 μm Cz-substrate, CiS process Irradiation source: Brookhaven National Laboratory for ⁶⁰Co-γ-photons

Sample	STFZ	DOFZ	EPI/Cz	
SIMS [O]		17		
	<5*10 ¹⁶	1.2*10 ¹⁷	(1.5-30)*10 ¹⁶	

Carbon concentration for all materials at detection limit [C] $\approx 5.7 \times 10^{15}$ cm⁻³

Annealing experiments

• *low irradiation doses* (4 Mrad) – the X defect is formed in oxygen enriched material via the annealing of divacancy for $T > 250^{\circ}C$

X defect – two acceptor states - Identified as V₂O¹⁾ Proposed formation mechanism¹: V₂ +O_i \Rightarrow V₂O (with D_{V2} = 3x10⁻³ exp (-1.3eV) instead of the former D_{V2} = 0.1 exp (-1.3eV))

¹⁾ Monakov et al, Phys Rev B, Volume 65, 233207 (2002)

• *high irradiation doses* (>100 Mrad) – X center formed in concentration higher than of V₂ for T> 250°C

X defect – Identified as $V_2O_2^{(2)}$ via: $V_2 + O_2 \Rightarrow V_2O_2$ and VO+VO (with $D_{V2} = 0.1 \text{ exp (-1.3eV)}$ and $D_{VO}(T)=6\text{Exp(-1.8eV/KT) cm}^2/\text{s})$

²⁾ I.Pintilie et al- 6th and 7th RD50 workshops

Which defect reactions at T>250 C can produce more V₂O?

- $V_2 + O \rightarrow V_2O$
- V+VO \rightarrow V₂O
- \Rightarrow Should exists a source of V

• Most probable VO can be the V source – it dissociates during annealing at T >250 C

 $\bullet \text{ VO} \rightarrow \text{V} + \text{O}$

Defect reactions

Vacancy-Oxygen related defect reactions	Defect reactions with other impurities*	
Diffusion reactions • $V + O \rightarrow VO$ • $V+VO \rightarrow V_2O$ • $V+V \rightarrow V_2$ • $V_2 + O \rightarrow V_2O$ • $V_2 + O_2 \rightarrow V_2O_2$ • $V+O_2 \rightarrow VO_2$ • $VO+O \rightarrow VO_2$ • $VO+VO \rightarrow V_2O_2$ Dissociation reactions • $VO \rightarrow V + O$ • $V_2O \rightarrow V + VO$ • $V_2O \rightarrow V + VO$	Diffusion reactions • $VO+H \rightarrow VOH$ • $V_2 + H \rightarrow V_2H$ • $V + H \rightarrow VH$ • $CiOi+H \rightarrow COH$ • $V+CiOi \rightarrow CsOi$ • $Ci+V \rightarrow Cs$ • $Ci+Oi \rightarrow CiOi$ • $V+CiCs \rightarrow CsCs$ Dissociation reactions • $VOH \rightarrow VO + H$ • $V_2H \rightarrow V + VH$ • $VH \rightarrow V+H$ • $CiCs \rightarrow Ci+Cs$ *Do not affect the V-O defect reactions as long as $[H] < 10^{15} \text{ cm}^{-3}$	

Parameters used for simulations

- $[O_i]$ = profile from SIMS
- [VO] = 1.1x10¹² x Dose (Mrad) x cm⁻³
- r = 5x10⁻¹⁰m

Diffusion parameters

(updated to nowdays literature)

- D_{VO}(T)=6Exp(-1.8eV/KT) cm²/s;
- D_{VV}(T)= 3x10⁻³exp(-1.3eV/KT) cm²/s;
- D_{Od}(T)=3x10⁻⁴exp(-1.3eV/KT) cm²/s;
- D_{oi}(T)=0.17exp(-2.54eV/KT) cm²/s
- $D_V(T) = 4.5 \times 10^{-4} \exp(-0.3 \text{eV/KT}) \text{ cm}^2/\text{s};$
- D_{Ci}(T)= 4.4x10⁻¹exp(-0.87eV/KT) cm²/s;

Dissociation

- K^{VO} = 1 x 10¹³exp(-2.1eV/KT) s⁻¹;
- K^{V2O2} = 1.5 x 10¹³exp(-2.1eV/KT) s⁻¹
- K^{V2O} = 2 x 10¹³exp(-2.1eV/KT) s⁻¹

O_i profile⁻ from SIMS measurements

520 Mrad - T=300^oC

570 Mrad - T=320^oC

Conclusions

• Simulations based on a more complex system of defect reactions show that both V_2O and V_2O_2 defects should form at elevated temperature.

• With VO as single initial source for vacancies and for the irradiation dose range investigated here:

 $\Rightarrow V_2O_2$ can be produced in a similar concentration with X center $\Rightarrow V_2O$ can be produced in a concentration higher than V_2 but in a much smaller concentration than of the X center

• Further studies are under discussion regarding the existence of additional single V migrating from Cz substrate.