

Status Report on New EPI-Devices

E. Fretwurst^(a), A. Barcz^(b), A. Furgeri^(c), F. Hönniger^(a), G. Kramberger^(d), G. Lindström^(a), E. Nossarzewska^(e), I. Pintilie^(a,f), R. Röder^(g)

(a) Institute for Experimental Physics, University of Hamburg

(b) ITE Institute of Electron Technology, Warzaw

(c) Institute for Experimental Nuclear Physics, University Karlsruhe

(d) Jozef Stefan Institute, University of Ljubljana

(e) ITME Institute of Electronic Materials Technology, Warsaw

(f) National Institute for Materials Physics, Bucharest

(g) CiS Institut für Mikrosensorik gGmbH, Erfurt

Material parameter and process technology

Preliminary results for 26 MeV proton and neutron irradiated devices

Outlook

Material Parameter

EPI Material:

Type: n-type, P doped Resistivity: 150 Ωcm Layer thickness: 72 μm Cz-Substrate: Type: n-type, Sb doped, <111> Resistivity: 0.01 Ωcm

> MCz Material:

Type: n-type, P doped, <100> Resistivity: > 600 Ωcm nominal Thickness: 280 μm

• EPI-layer resistivity profile:

SR ρ before diode process Excellent homogeneity in epi-layer

 $\rho = (148 \pm 4) \Omega cm$

Oxygen Depth Profiles

after different process steps

EPI Material:

Magenta: after as grown epi-layer Blue: after full standard process Red: after "Diffusion Oxygenation" (DO) and full device process O out diffusion on the epi front side after DO and full process

MCz Material:

Green: after oxidation (FOX) Blue: after FOX+4h 973°C+1h 850°C Red: after full standard process O out-diffusion on the front side after any step

Differences in C-V shape

DO:

2 regions in log-log presentation before full depletion Low bias → low slope (high N_{eff}) High bias → large slope (low N_{eff}) C-V shape independent on annealing

Standard:

4 regions in log-log presentation 2 shoulders appear → inhomogeneous space charge, possibly correlated with [O] profile Specific C-V shape depends on fluence and annealing status

EPI - 26 MeV Protons - N_{eff}

N_{eff} development versus fluence

No obvious difference between 72 μm EPI-standard and –DO

Tendency quite similar to 50 μ m EPI, only shifted due to different doping concentration resp. resistivity 72 μ m, 150 Ω cm 50 μ m, 50 Ω cm

Slope for high fluence regime

 $g_{eff} = 0.015 \text{ cm}^{-1} \text{ for } 72 \text{ }\mu\text{m}$ $g_{eff} = 0.018 \text{ cm}^{-1} \text{ for } 50 \text{ }\mu\text{m}$

EPI - 26 MeV Protons - I/V

Generation current

No difference between 50 μm and 72 μm EPI-diodes but damage parameter α at t₀ (after irradiation, no annealing)

 $\alpha(t_0) = (3.0 \pm 0.2) \cdot 10^{-17} \text{ A/cm}$

smaller compared to expected value

 $\alpha(t_0) > 4-5 \cdot 10^{-17} \text{ A/cm}$

MCz - N_{eff} and I/V for 26 MeV Protons

• N_{eff} development:

Typical fluence dependcence, Minimum between 1-2·10¹⁴ cm⁻² Linear increase above 4·10¹⁴ cm⁻²

$$\rightarrow$$
 g_{eff} = 9.4 · 10⁻³ cm⁻¹

Generation current increase:

Damage coefficient for t = 0 min

→ $\alpha = (4.2 \pm 0.3) \cdot 10^{-17}$ A/cm

Larger compared to EPI devices

H

4.10^{13} ▲ EPI standard, 50 μm, 23 GeV p $2 \cdot 10^{13}$ EPI standard, 72 µm, 26 MeV p • EPI DO, 72 μm, 26 MeV p ΔN_{eff} (t₀) [cm⁻³] -2.10^{13} H **⊢●**− -4.10^{13} -6[.]10¹³ -8.10^{13} -10¹⁴ 2.10^{15} 4.10^{15} 6.10^{15} $8^{\cdot}10^{15}$ 10¹⁶ 0 $\Phi_{eq} [cm^{-2}]$

• Change of N_{eff} :

$$\Delta N_{\rm eff} = N_{\rm eff,0} - N_{\rm eff}(\Phi)$$

Preliminary result:

Similar fluence dependence of ΔN_{eff} for

50 μm, 50 Ωcm, 23 GeV and 72 μm, 150 Ωcm, 26 MeV

presuming space charge stays positive

EPI – Annealing at 80 °C

 Difference between standard and DO EPI

 DO EPI: No short term annealing

Long term annealing strongly delayed

 $\tau_v = 700 \text{ min}$

Standard EPI:
Short term annealing:
→ increase of V_{fd}
→ no type inversion at this dose
 (Φ_{eq} = 2·10¹⁵ cm⁻²)
Long term annealing:

$$\tau_{y} = 140 \min$$

EPI - Charge Collection Efficieny

Charge collection efficiency

²⁴⁴Cm α-source, $E_{\alpha} = 5.8$ MeV

Collected charge measured by TCT voltage scan Integration time window 10 ns

Collected charge taken at about 2 x full depletion voltage from C-V or 250 V

Rough estimate of damage parameter β_α from linear fit

 $\beta_{\alpha} \approx 2.6 \cdot 10^{-17} \text{ cm}^2$

Comparable with data from 50 μm EPI at 23 GeV

 $\beta_{\alpha} \approx 2.7 \cdot 10^{-17} \text{ cm}^2$

EPI - N_{eff} for Reactor Neutrons

- Development for both materials quite similar
- N_{eff} values for **DO** always a bit larger
- Minimum between 0.5 1.10¹⁵ cm⁻²
- SCSI above 1.10¹⁵ cm⁻²? (indication found by G. Kramberger)
- Introduction rate for large fluence values: $g_{eff} \approx 7.7 \cdot 10^{-3} \text{ cm}^{-1}$

EPI - $\Delta Neff$ Comparison 50 μm and 72 μm

- ΔNeff versus fluence substantially different for 72 µm and 50 µm material
- Donor removal more effective for 72 µm compared to 50 µm due to lower [P]-concentration in 72 µm material (shift of the maximum to lower fluence)

Space Charge Sign Inversion for 72 μm ??

Has to be studied by different methods

EPI – I/V for Reactor Neutrons

Generation current:

- No difference between 72 μm standard and DO
- **Linear increase for 72 μm**
- Saturating tendency for 50 μm
- **Damage parameter 72 μm:**

 $\alpha(72\mu m, t_0) = (4.8 \pm 0.4) \cdot 10^{-17} \text{ A/cm}$

 Damage parameter 50 µm: (low fluence limit)

 $\alpha(50 \ \mu m, t_0) = (4.0 \pm 0.4) \cdot 10^{-17} \text{ A/cm}$

Outlook

Next steps:

- (a) Irrad. of EPI, MCz (normal and thinned), thinned FZ with 23 GeV protons
- (b) Special irrad. with electrons and Co-60 for defect kinetic studies
- (c) Continuation of annealing and TCT studies
- (d) Continuation of defect studies

New material:

EPI, p-type, 50 Ωcm, 50 μ m (Process at CiS in progress) Different EPI material ready for processing at CiS (RD50 project) n-type: 100 μ m and 150 μ m p-type: 100 μ m and 150 μ m

Processing:

Standard and DO DO has to be adapted to the different thicknesses

Microscopic defects working group meeting in the framework of RD50

University of Hamburg

August, 23.-24., 2006

- > Meeting devoted to defect analysis in radiation damaged silicon detectors
- Proposed topics:
- Survey of defect analysis tools (DLTS, TSC, PL, IR, PITS,...), sensitivity, parameters of investigation, limitations
- Results of defect analysis (in FZ, DOFZ, EPI, Cz, MCz), correlation with material parameters, generation, annealing
- Discussion on specific defects (like V₂O, X, higher order V and I related complexes)
- The role of Oxygen, Carbon, Hydrogen,... for defect engineering
- Possibilities for a coordinated investigation of most important issues