## Characterization of irradiated MOS-C with X-rays using CV-measurements and gated diode techniques

Q. Wei, L. Andricek, H-G. Moser, R. H. Richter,

Max-Planck-Institute for Physics Semiconductor Laboratory

## Outline

- Motivation
- Experimental conditions
- Study of the radiation damage by CVmeasurements and gated diode technique, annealing behavior at RT, comparison of extracted N<sub>ox</sub>, N<sub>it</sub> values
- Discussion of the results

## **Motivation**

- Radiation damage of semiconductor devices (e.g. DEPFET)
- Study on the radiation damage with MOS-C using CaliFa teststand at MPI HLL Munich
- Comparison of results from two different measurement methods (MOS-C and gated diode)

# Comparison between different semiconductor devices

(Only for the 1-D defects)

|                             | MOS-C                                                    | Gated diode                                                                       | DEPFET                                               |
|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|
| N <sub>ox</sub><br>(method) | ΔV <sub>FB</sub><br>(CV-<br>Measurement)                 | ΔV <sub>FB</sub> & ΔV <sub>g</sub><br>(CV-Measurement &<br>gated diode technique) | ΔV <sub>t</sub><br>(IV-Measurement)                  |
| N <sub>it</sub><br>(method) | Stretchout<br>(High-low<br>frequency based<br>on the CV) | Full width at 2/3<br>maximal of current<br>(gated diode<br>technique)             | Subthreshold<br>slope<br>(Subthreshold<br>technique) |
| Other<br>parameters         |                                                          | S <sub>0</sub> , $\sigma_{n/p}$ & $T_0$<br>(gated diode<br>technique)             | g <sub>m</sub><br>(IV-Measurement)                   |

## **Experimental Conditions**



- Irradiation: X-Ray tube with Mo target at 30kV and 30mA (17,44keV & Bremsstrahlung) dose: 1 week of irradiation up to 1M rad, dose rate: 2.5rad/s (1rad=0.01J/kg)
- Samples:
  - Based on n-type high resistance silicon(450 $\mu$ m) wafer: doping concentraion ~ 10<sup>12</sup> cm<sup>-3</sup>
- Bias conditions: +5V,0V,-5V for MOS-C; 0V for gated diode
- Measurements:
  - CV: HF (10kHz); LF (20Hz)
    - all values in series mode ( $C_s$ ,  $R_s$ )
  - Gated diode:  $V_{AI}$ : 10V,  $V_{edge}$ : 0.25V,  $V_{AI/Poly}$ : from positive to negative values
  - Annealing: at RT for about 5 days on MOS-C and 10 days on Gated Diode

#### **Cross section and layout of MOS-C**









For MOS-C

Gate bias conditions: +5V



#### For MOS-C

#### Gate bias conditions: -5V



#### 4.0E+12 → Al/+5V positive oxide charge For MOS-C 3.5E+12 poly/+5V AI/0V **\_** 3.0E+12 $V_{G}$ at +5V Vs. $V_{G}$ at 0V poly/0V \_\_\_\_\_ Al∕-5V 2.5E+12 Nox (cm-2) poly/-5V Much more defects (Nox, Nit) 2.0E+12 for positive gate than for 0V 1.5E+12 bias both poly-gate and Algate structure 1.0E+12 5.0E+11 $V_{G}$ at -5V Vs. $V_{G}$ at 0V 0.0E+00 200 400 600 800 1000 0 Almost the same amount of dose (krad) 7.0E+11 defects $(N_{ox}, N_{it})$ for negative interface trap gate bias as for 0V both poly-6.0E+11 gate and Al-gate structure 5.0E+11 – Al/+5V For any given V<sub>G</sub> **A** 4.0E+11 **B** 3.0E+11 Poly/+5V AI/0V More defects for Al-gate than - poly/0V poly-gate <u></u> − **X** − Al⁄-5V 2.0E+11 poly/-5V 1.0E+11 0.0E+00 200 400 600 800 1000 0

dose (krad)





#### For gated Diode

#### Gate bias conditions: 0V

#### Using CV-method (HF)



A good agreement for determination of  $N_{ox}$  by  $\Delta V_{FB}(CV)$  and  $\Delta V_G$ (gated diode technique)

#### Using gate controlled diode technique

Gate bias conditions: 0V



#### **During annealing N<sub>ox</sub> decreases linearly with ln(t)**





#### Radiation Effects (ionizing radiation)

- 1. postive oxide charge: negative shift of the theshold voltage ( $\sim t_{ox}^2$ )
- 2. interface traps: higher 1/f noise and reduced mobility  $(g_m)$

### **Transconductance and subtreshold slope**



### **Discussion of the results**

Comparison of  $N_{ox}$  and  $N_{it}$  between MOS-C and gated diode

for AI- and poly-gate structure at dose of 189krad and 1Mrad

| dose                                                                                      | N <sub>ox</sub> | MOS-C                                                                                | Gated diode                                                                                   | dose    | N <sub>it</sub> | MOS-C    | Gated diode |
|-------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|-----------------|----------|-------------|
| 189krad                                                                                   | Al              | 8,3e11                                                                               | 3,3e11                                                                                        | 189krad | Al              | 2,8e11   | 5,1e10      |
| 189krad                                                                                   | Poly            | 3,3e11                                                                               | 2,6e11                                                                                        | 189krad | Poly            | 6e10 <   | 1,2e11      |
| dose                                                                                      | N <sub>ox</sub> | MOS-C                                                                                | Gated diode                                                                                   | dose    | N <sub>it</sub> | MOS-C    | Gated diode |
| 1Mrad                                                                                     | Al              | 1,9e12                                                                               | 5,7e11                                                                                        | 1Mrad   | Al              | 6,8e11   | 1,2e11      |
| 1Mrad                                                                                     | Poly            | 6,7e11 =                                                                             | 5,7e11                                                                                        | 1Mrad   | Poly            | 1,1e11 < | 2,1e11      |
| For poly-gate structure: more N <sub>it</sub> on Gated diode than on MOS-C                |                 |                                                                                      | For Al-gate structure: more N <sub>it</sub> and N <sub>ox</sub> on MOS-C than on Gated diode  |         |                 |          |             |
| For N <sub>ox</sub> : the same for both Al-gate and poly-<br>gate structure (Gated diode) |                 |                                                                                      | For N <sub>ox</sub> : More N <sub>it</sub> for poly-gate than Al-gate structure (Gated diode) |         |                 |          |             |
| More N <sub>it</sub> and N <sub>ox</sub> for Al-gate than poly-gate structure (MOS-C)     |                 | For N <sub>ox</sub> : a good agreement for poly-gate structure (MOS-C & gated diode) |                                                                                               |         |                 |          |             |

(Poly-gate structure for three devices)

| dose    | DEPFET | N <sub>ox</sub> | N <sub>it</sub> |  |
|---------|--------|-----------------|-----------------|--|
| 912krad | Poly   | 6~7e11          | 7e11            |  |

For N<sub>ox</sub>: DEPFET=Gated diode  $\approx$  MOS-C  $\checkmark$ 

For N<sub>it</sub>: DEPFET>Gated diode>MOS-C ?

# Comparison between literature and our experiment

- Differences for the saturation effect of interface trap on MOS-C
- Differences for the generation of defects on MOS-C (poly-gate for DEPFET)
- Differences for defect generation at negative gate bias on MOS-C





# **Backup slides**

## **Performance before irradiation**



o non-irrad. double pixel DEPFET
 o L=7μm, W=25 μm

 $_{o}$  I<sub>drain</sub>=41  $\mu$ A

o Drain current read out

o time cont. shaping  $\tau$ =6 µs



### **Performance after irradiation for DEPFET**

- o Irradiated double pixel DEPFET
  o L=7μm, W=25 μm
  o after 913 krad, <sup>60</sup>Co
- o  $V_{thresh} \approx -4V$ ,  $V_{gate} = -5.3V$
- $_{o}$  I<sub>drain</sub>=21  $\mu$ A
- o Drain current read out
- o time cont. shaping  $\tau$ =6 µs

Noise ENC=7.9 e<sup>-</sup> (rms) at T>23 degC



Non-irradiated: Noise ENC=2.3 e<sup>-</sup> (rms)