

CCE/CV measurements with irradiated p-type MCz diodes

Herbert HoedImoser^a, Michael Moll^a, Henri Nordlund^b (a: CERN, b: Helsinki University of Technology)

> RD50 Workshop Praha, 27. 06. 2006

Contents

- CCE setup
- Commissioning measurements
- Measurements on irradiated p-type MCz
- Annealing of irradiated p-type MCz

RD50 CCE: measurement parameters

signal shaping time: 2.5 µs

Gain calibration factor: 245 e⁻/mV

```
temperature:
down to -30 °C with fridge + peltier
```

```
bias: up to 1000 V
```

noise: 567e⁻ + 4.26 e⁻ /pF

trigger rate with ⁹⁰Sr source: \approx 50-60 Hz

guard ring: connected to ground

ITC-IRST square MG diodes n⁺/p (batch SMART2) 300 μm MCz

W066 – series: p-spray dose = $3 \times 10^{12} \text{ cm}^{-2}$ W182 – series: p-spray dose = $5 \times 10^{12} \text{ cm}^{-2}$

Irradiation: 24 GeV/c protons @ CERN/PS up to $\Phi = 10^{16}$ cm⁻²

Die dimension: $(5920 \ \mu m)^2$ Diode area (p+ implant): 13.688 mm² Metal hole area: 4.524 mm² (Φ 2.4 mm) 1 Large guard (~90 μm) + 10 float rings

RD50 CCE: measurement & analysis

Example: p-type MCz IRST-W066-22 irradiation: Φ = 3.5×10¹⁴ p/cm² annealing: 512 min @ 80 °C

temperature: -10 °C bias: 200 V

pedestal measurement

deconvoluted landau distribution

RD50 Workshop Praha 2006

CCE: measurement & analysis

CCE: comparison to CV???

....considering the T-dependencies in the measurements of irradiated detectors!

CCE for irradiated detectors

V_{DEP} as a function of fluence

Leakage current

RD50 Workshop Praha 2006

Herbert HoedImoser

Annealing study

Annealing: VDEP **RD50** irradiation: $\Phi = 3.5 \times 10^{14} \text{ p/cm}^2$ IRST-W066-22 450 CV @ room temperature 400 CV @ -10°C 350 depletion voltage [V] 300 preliminary evaluation: 250 $\Delta N_{eff} \approx 5E12 \text{ cm}^{-3}$ 200 $\Delta N_{eff} / \Phi$ (24 GeV/c p) ≈ 0.014 150 $\Delta N_{eff} / \Phi(1 \text{ MeV/c n}) \approx 0.023$ 100 50 100 10 1000 accumulated annealing time at 80°C [min]

irradiation: $\Phi = 3.5 \times 10^{14} \text{ p/cm}^2$ IRST-W066-22 temperature: -10 °C 1.80E-06 1.60E-06 1.40E-06 ◆I (250V) □ I(300V) eakage current [A] 1.20E-06 ▲ I(500V) 1.00E-06 8.00E-07 6.00E-07 4.00E-07 2.00E-07 0.00E+00 10 100 1000 10000

accumulated annealing time @ 80 °C [min]

Summary

• CCE/CV/IV measured for p-type MCz diodes irradiated up to fluences of 10^{16} 24 GeV/c p/cm⁻²

CCE(300V): 93% @ 1.2E14 p/cm2(7.4E13 1MeV/c n/cm2)55% @ 1.1E15 p/cm2(6.8E14 1MeV/c n/cm2)

• Annealing of an irradiated diode changes depletion voltage and leakage current but not CCE

• CCE setup ready to investigate further detectors

