DLTS measurements of Epitaxial and MCZ silicon detectors after 26 MeV proton irradiation

- **F. Hönniger(a)**, A. Furgeri(b), E. Fretwurst(a), G. Lindström(a), I. Pintilie(c),
- (a) Institute for Experimental Physics, University of Hamburg
- (b) Institut fuer Experimentelle Kernphysik, University of Karlsruhe
- (c) National Institute for Materials Physics, Bucharest

- Motivation
- Material properties
- Experimental methods
- Measurements and results
- Conclusions

Shallow Donors, the real issue for EPI -Comparison of 25. 50 and 75 um Diodes-

SIMS profiling:

 $[O](25\mu m) > [O](50\mu m) > [O](75\mu m)$

Stable Damage:

 $N_{eff}(25\mu m) > N_{eff}(50\mu m) > N_{eff}(75\mu m)$

TSC Defect Spectroscopy:

 $[BD](25\mu m) > [BD](50\mu m) > [BD](75\mu m)$

Defect spectroscopy after PS p-irradiation

Generation of shallow donors BD (Ec-0.23 eV) strongly related to [O] Possibly caused by dimers monitored by IO₂ complex

Strong correlation between [O]-[BD]-g_C generation of O (dimer?)-related BD reason for superior radiation tolerance of EPI Si detectors

Material

Experimental₊**Methods**

Irradiation source:

26 MeV protons

- **Defect characterisation** by C-DLTFS
- Measurement of depth profile taking transition region into account.

$$N_{t} = 2N_{D} \frac{\Delta C_{0}}{C_{R}} \left[1 - \left(\frac{C_{R}}{C_{P}}\right)^{2} - \frac{2\lambda C_{R}}{\varepsilon \varepsilon_{0} A} \left(1 - \frac{C_{R}}{C_{P}}\right) \right]^{-1} \approx 2N_{D} \frac{\left|\Delta C_{0}\right|}{C_{R}}$$

- Φ_{eq} = 8.2 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-0.1V
- T_w= 200ms, T_P= 100ms

DLTS Spectra

EPI standard:

- Φ_{eq} = 8.0 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-0.1V
- T_w= 200ms, T_P= 100ms

MCZ:

- Φ_{eq} = 4.6 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-5V
- T_w= 200ms, T_P= 100ms

Depth profil IO₂

Bistability of IO₂

Introduction rates

VO:

Similar introduction rate like for 23 GeV p+ irradiation

MCZ is higher after 26 MeV p+ irradiation.

V₂(=/-):

Similar introduction rate like for 23 GeV p+ irradiation

V₂(-/0):

Introduction rate is only half of what was found after 23 GeV p+ irradiation

Conclusions

- New Epi materials show high [O] and high [IO₂] like in MCZ
- Depth caracteristics of [IO₂] corresponds with [O]
- IO₂ defect shows bistability
- Introduction rates of vacancy related defects are nearly the same for investigated materials

