Exploring Right Handed Neutrinos at ILC500

Work in progress Jurina Nakajima, Daniel Jeans^A, Arindam Das^B, Keisuke Fujii^A, Nobutika Okada^C, Satomi Okada^C, Ryo Yonamine^A

SOKENDAI, KEK^A, Hokkaido Univ.^B, Arabama Univ.^C

Introduction of ILC

International Linear Colider

□e+e- linear collider $\Box \sqrt{s} = 250 \text{ GeV}$ (Extend to 500, 1000GeV) Polarized beams e⁻: 80%, e⁺: 30% " $eLpR" = (e^{-} - 80, e^{+} + 30)$ "eRpL" = ($e^{-}+80$, $e^{+}-30$) □ Higgs factory □ Measuring Higgs precisely +

New physics search beyond SM

2

Motivation and introduction

The Right Handed Neutrino (RHN) can address the following big questions

- Why does matter dominate anti-matter in our universe?
- Do quarks and leptons unify?
- Why is neutrino mass so small?

RHN is assumed to be

Benchmark points with $M_N = 100, 150, 200, 225 \text{ GeV}$

Benchmark points

• Pol(e⁻, e⁺) = (-0.8, +0.3), (+0.8, -0.3): $\mathcal{L} = 1600 \, [\text{fb}^{-1}]$ • Pol(e⁻, e⁺) = (-0.8, -0.3), (+0.8, +0.3): $\mathcal{L} = 400 \, [\text{fb}^{-1}]$

M _N [GeV] RHN mass	Mz [,] [TeV] Z' mass	g₁' U(1) _{B-L} coupling	V _{eN} ² mixing angle	BR (<i>N→eW</i>)	$\sigma(e_L^- e_R^+ \to NN)$ 100% polarization [fb]	Event # at ILC500 [4000fb ⁻¹]
100	7]	0,0009	0,44	0,71	1261
150	7	1	0,0009	0,33	0,45	229
200	7	1	0,0009	0,30	0,16	131
225	7	1	0,0009	0,29	0,052	18

▶ minimal U(1)_{B-L} model

▶ ILC 500 with initial state radiation (ISR) and beamstrahlung (BS)

Current limits - Z' mass

The heavier Z' mass less constrained by LHC

Heavy Neutral Lepton search potential of future HET factories 2023

Analysis tool and backgrounds

Cut conditions to select signal events

Reconstruction methods

After removing isolated electrons force into 4 jets (Durham)

$$e^{+} \qquad e^{+} \qquad e^{+$$

Choose combination with minimum F₁,F₂

Signal mass cut

ILC 500 with ISR / BS **Pol(e⁻, e⁺) = (-0.8, +0.3)** $\mathcal{L} = 1600 \, [\text{fb}^{-1}]$

For each M_N, mass window M_N-10, M_N+15 [GeV]

Assume background distribution is flat 20 (eLpR) background events remain in mass window

Signal mass cut

Exclusion plot on cross-section

Exclude benchmark points and cross-sections up to 10x smaller

Conclusion:

Can use same sign lepton signature to set powerful limits on RHN at ILC!

Current Activity & Future Plan

□ ILC250 case (on going) → Try to improve signal efficiency

☐ Same sign muons
→ Expect smaller backgrounds

Part1: RHN

Model : minimal U(1)_{B-L}

Signal

Isolated e,y,µ

- ILC 500 with ISR / BS
- Pol(e⁻, e⁺) = (+0.8, −0.3)

jurina@post.kek.jp 16

Distribution of Isolated electron energy

• ILC 500 with ISR / BS

 $Pol(e^{-}, e^{+}) = (+0.8, -0.3)$

- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Isolated e is same sign $(e_1 \times e_2 = 1)$

Distribution of cosθisoe

ILC 500 with ISR / BS

 $Pol(e^{-}, e^{+}) = (+0.8, -0.3)$

Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0 Isolated e is same sign (e₁×e₂=1)

Distribution of y12 (Durham)

- ILC 500 with ISR / BS
 - Isolated e # = 2 && Isolated $\gamma \# = 0$ && Isolated $\mu \# = 0$ $Pol(e^{-}, e^{+}) = (+0.8, -0.3)$ Isolated e is same sign ($e_1 \times e_2 = 1$)

Cosθ_{Pmiss} vs Magnitude of missing momentum P_{miss}

ILC 500 with ISR / BS

 $P_{miss} < 100 \&\&(P_{miss} < 40 || |cos \theta_{Pmiss}| > 0.95)$

Cut flow (eRpL) · ILC 500 with ISR / BS · Pol(e⁻, e⁺) = (+0.8, -0.3) $\mathcal{L} = 1600 \, [\text{fb}^{-1}]$

ILC 500 with ISR / BS

ILD work in progress

		Expecte	ed signal		Expected background						
	M _N =100	M _N =150	M _N =200	M _N =225	eeqqqq	4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron	
No cut	558	394	143	45	3925	258648	612455	7100	56233	4894	
e _{iso} #=2 && γ _{iso} #=0 &&	420	343	126	40	1935	9426	249000	6142	1295	127	
Same sign (e _{iso1} ×e _{iso2} = 1)	346	115	81	12	1231	7210	140176	3911	870	94	
E _{iso} < 200 [GeV]	171	114	41	12	14	3741	3294	2	177	19	
-0.95< cosθ _{isoe} < 0.95	158	103	37	11	3	1324	475	1	113	12	
lsolatedLepTa gging _{min} > 0.9	96	91	32	10	0	198	101	0	15	1	
log ₁₀ (y12) > -1	88	90	30	9	0	199	86	0	6	0	
P _{miss} < 100 && (P _{miss} < 40 II Icosθ _{Pmiss} I > 0.95)	86	84	29	9	0	4	15	0	2	0	

Results

	M _N [GeV]	# of Signal After cut	# of BG After cut	Signal Significance	σ ₀ [fb] Initial benchmark	σ ⁹⁵ [fb] 95% exclusion limit	$\frac{\sigma^{95}}{\sigma_0}$	α ⁹⁵ [TeV ⁻⁴]
	100	53,64		6,25 0,55		0,12	0,21	3,83E-05
LR 80,30	150	52,73		6,18	0,36	0,076	0,21	2,96E-05
	200	18,30	20,12	2,95	0,14	0,086	0,61	7,57E-05
	225	5,51		1,18	0,046	0,085	1,8	2,21E-04
RL 80,30	100	66,75		7,98	0,71	0,065	0,092	1,69E-05
	150	63,41	3,24	7,77	0,45	0,043	0,097	1,35E-05
	200	21,23		4,29	0,16	0,047	0,29	3,57E-05
	225	6,077		1,99	0,052	0,052	1	1,21E-04

jurina@post.kek.jp

Exclusion plot on U(1)_{B-L} parameters

Translate to the U(1)_{B-L} model parameters

The benchmark points isn't excluded only at $M_N = 225 \text{ GeV}$

eLpR case

Cut flow (eLpR)

ILC 500 with ISR / BS

• Pol(e⁻, e⁺) = (-0.8, +0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

ILD work in progress

		Signal	Entries		Background Entries						
	M _N =100	M _N =150	M _N =200	M _N =225	eeqqqq	4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron	
No cut	554	394	143	45	11898	2825010	699475	16425	129283	11028	
e _{iso} #=2 && γ _{iso} #=0 &&	347	343	79	40	4721	90818	162774	9422	2271	201	
Same sign (e _{iso1} ×e _{iso2} = 1)	176	115	39	12	39	46138	3800	8	439	25	
E _{iso} < 200 [GeV]	175	114	39	12	39	41319	3557	8	439	25	
-0.95< cosθ _{isoe} < 0.95	156	103	36	11	13	17506	623	4	266	15	
lsolatedLepTa gging _{min} > 0.9	94	91	31	10	2	2632	128	1	50	0	
log ₁₀ (y12) > -1	94	90	31	9	2	2632	128	1	50	0	
P _{miss} < 100 && (P _{miss} < 40 II Icosθ _{Pmiss} I > 0.95)	84	84	28	9	1	79	30	0	9	0	

Electron Charge

- ILC 500 with ISR / BS
- $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$
- Isolated e # = 2 && Isolated $\gamma \# = 0 \&\&$ Isolated $\mu \# = 0$

e⁺

е

Z

N

Distribution of IsolatedLepTagging

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated $\gamma \# = 0$ && Isolated $\mu \# = 0$
- · Pol(e⁻, e+) = (−0.8, +0.3)
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Isolated e,y,µ

ILC 500 with ISR / BS

• $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$

28

Distribution of Isolated electron energy

٠

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Distribution of cosθisoe

ILC 500 with ISR / BS

 $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$

Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0 Isolated e is same sign (e₁×e₂=1)

4 fermions semi leptonic processes in t-channel \rightarrow distributed in lcos θ_{isoe} l ~ 1

Distribution of y12 (Durham)

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Pol(e^{-}, e^{+}) = (-0.8, +0.3)
- Isolated e is same sign $(e_1 \times e_2 = 1)$

4f and 6f background information

Cross section — BG

• ILC 500 with ISR / BS

(100%,100%)		eeqqqq	4f_singleW _semileptonic	4f_singleZee _semileptonic	
	еехуух	xxxxee	ууууее	4f_sw_sl	4f_sze_sl
eLpR	1,64E+01	8,71E-02	1,45E-01	7,81E+03	1,96E+03
eRpL	3,64	4,62E-02	5,31E-02	2,28E+01	1,73E+03
eLpL	6,63	3,38E-02	2,20E-02	7,53E+02	1,78E+03
eRpR	6,61	3,30E-02	1,97E-02	7,50E+02	1,78E+03

Cross section — BG

$\cdot~$ ILC 500 with ISR / BS

(100%, 100%)	6f_ttbar											
	yyveev	yyvelv	yyvlev	ууvеух	yyxyev	yyvllv	yyvlyx	yyxylv	yyuyyu	ууиуус	уусууи	уусуус
eLpR	2,01E+01	3,96E+01	3,96E+01	1,17E+02	1,17E+02	7,87E+01	2,32E+02	2,31E+02	1,67E+02	1,64E+02	1,65E+02	1,63E+02
eRpL	7,56E+00	1,50E+01	1,50E+01	4,45E+01	4,45E+01	3,01E+01	8,91E+01	8,89E+01	6,45E+01	6,44E+01	6,41E+01	6,07E+01
eLpL	1,08E-01	1,89E-01		5,46E-01								
eRpR	1,09E-01		1,88E-01		5,42E-01							

Information associated with U(1)_{B-L} model

Current limits - Z' mass

SM like Z' coupling

[qd] α 10⁻¹ α ATLAS Simulation --- Expected limit **ILC250** 0.100 $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$ Expected ± 1σ Expected $\pm 2\sigma$ $Z' \rightarrow ee$ 0.010 10-2 — Z'_{SSM} < u > = 200σ(e⁺e⁺→N'N')[fb] 10⁻³ 0.001 10 10-4 minimal B-L model $MN_{1.2.3} = 50 \text{ GeV}$ 10⁻⁵ 10-5 MN_{1.2.3} = 100 GeV Alternative B-L model 10-6 10⁻⁶ $MN_{12} = 50 \text{ GeV}$ $MN_{1,2} = 100 \text{ GeV}$ 10-7 10⁻⁷ 5 6 3 7 7.5 3.54.5 6.5 5.5 M_{z'} [TeV] $m_{Z'}$ [TeV] ATLAS-TDR-LHCC2017-2018 arXiV[1812.11931]

The heavier Z' mass less constrained by LHC

Heavy Neutral Lepton search potential of future HET factories 2023

HL-LHC prospects limit for U(1)_{B-L} model

Current limits |V_{eN}|²

IV_{eN}I² : the "light-heavy" neutrino mixing matrix

https://arxiv.org/pdf/1802.02965.pdf

Current Limits and prospects - Z' mass,g1'

G1':U(1)_{B-L} gauge coupling constant

