

High bandwidth and high precision orbit feedback design for PETRAIV

Sajjad H. Mirza on behalf of Work Package 2.08 (Feedback) MSK, DESY, Hamburg Hamburg, 27.06.2023

HELMHOLTZ

CERN | Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

Content

Introduction to the PETRA IV FOFB model

Disturbance modelling

Corrector magnets – Design and simulations

Power Supply design – Preliminary design

Single-input-single-output bandwidth estimate

Girder alignment – Simulations for the proof of principle

PETRA IV-introduction

≻6 GeV fourth generation light source under development ≻Circumference: 2300 meters. ➤Construction of the accelerator within the existing PETRA III tunnel ➤Target of highest spatial resolution for all X-ray techniques by focusing the synchrotron radiation on the smallest spot

➢Planned beam emittance

 ϵ (20 pm.rad (X) and 4 pm.rad (Y))

FOFB parameters

FOFB: Machine Parameters & Beam Stability Requirements

Parameter	Value
Circumference	2.3km
Number of BPMs (x/y)	788
Number of fast correctors	560 (244H, 316V)
Betatron freq. (f_x / f_y)	23.4 kHz / 35.2 kHz
Synchrotron oscillation	600 Hz
$\beta_{x,y}$ at ID, standard cell (29)	2.2 m, 2.2 m
$\beta_{x,y}$ at ID, flagship IDs (7)	4 m, 4 m
Natural emittance $\epsilon_{x,y}$	20 pm rad, 4 pm rad
Beam size $\sigma_{x,y}$ at ID, standard cell	6.6 μm, 2.97 μm
Beam size $\sigma_{x,y}$ at ID, flagship IDs	8.9 µm, 3.98 µm
Beam divergence $\sigma'_{x,y}$ at ID, standard cell	3.02 µrad, 1.34 µrad
Beam divergence $\sigma'_{x,y}$ at ID, flagship IDs	2.23 µrad, 1.0 µrad

Beam stability requirements:

Typically 10% of beam size and divergence at the IDs.

$$\sigma_e = \sqrt{\beta \varepsilon + \sigma_E^2 \eta^2} \qquad \sigma_e' = \sqrt{\frac{\varepsilon}{\beta}}$$

Remark: Some beamlines may require even 5%, 3%, ... in future?

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

FOFB system topology

Latency optimized topology

- 1 central control unit (GLO)
 - Close to RF system / timing system
 - Short path from GLO to LOC in experimental halls
- 15 distributed local sections (LOC)
 - BPM collector
 - Transmitter to power supplies
- Optical fiber communication links
 - Global to all local systems \rightarrow classical regulation
 - Local to local system
 - For local control scheme integrating experiments

Task force for radiation damage: e.g. optical connections that have to be routed through tunnels

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

CERN Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

Disturbances

FOFB: Stability task force @ PETRA III

Ground motions

- Ocean waves (<1Hz)
- Traffic (1...10Hz)
- In-house noise (10...100Hz)
- Girder and amplification factor (< 48 Hz)

Additional sources / sinks

- ID gap movements (Hz depending on speed)
- Asynchronous motors (<50Hz)
- Controlled motors/pumps (25Hz)
- Power supply output ripple (12.5 kHz)
- Harmonics of DESY II (~30Hz)

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

FOFB Modelling

FOFB simulations - Introduction

Single-Input Single-Output (SISO)

- Locally 1 position
- Dynamic responses of subsystems
- SISO worst case scenario → MIMO best case scenario

Multiple-Input Multiple-Output (MIMO)

- Globally all locations (spatial distribution)
- Stable SISO system ≠ stable MIMO system
 - SVD modes can get unstable
- Currently static errors

Corrector magnets and Power supply

Slow and fast correctors in lattice

Overlap of slow and fast magnets

Slow corrector magnets = 618 in X-plane Slow corrector magnets = 618 in Y-plane Fast corrector magnets = 244 in X-plane Fast corrector magnets = 316 in Y-plane

Higher corrector strength of fast magnets due to combined slow/fast action

The overlap of slow and fast correctors lead us to interfere in

→Optimization of fast corrector magnet design

→DC current downloading to slow magnets

CERN | Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

Combined (slow and fast) corrector magnet

Similar to APS-U design

Total / iron length is 150 mm / 90 mm

Baseline parameters: ightarrow for current and inductance optimization

- Main/aux coil is 65/27 turns (2.4074)
- Coil current 15 A
- Self-inductance 23 mH

Simulations by Jan-Magnus at TEMF TU Darmstadt

Fast correctors \rightarrow 3D simulations in CST

Simulation strategy

Frequency domain simulations

- Transfer function (up to 65 kHz)
- ✤ 3D spatial field distribution
 - Laminated magnet yoke
 - Vacuum pipe
 - Nearby quadrupoles

Eddy Current Losses in the Yoke

- 10^{2} $20\,\mathrm{mm}$ $20\,\mathrm{mm}$ $\underset{10^{1}}{\widehat{\mathrm{O}}} \operatorname{Power}_{10^{1}}$ $95\,\mathrm{mm}$ Full model -0- 10^{0} Homogenized model 10^{2} 10^{1} 10^{3} Frequency (Hz)
- Good approximation of losses in yoke & beam pipe (max. relative error 4 %)
- Simulation time reduced from several hours to 4 min

CERN Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

- Homogenization of the laminated magnet yoke
- Magnetoquasistatic PDE: $\nabla \times (\nu \nabla \times \underline{\vec{A}}) + j\omega \sigma \underline{\vec{A}} = \vec{J}_{s}$
- Adapt reluctivity ν and conductivity σ in the laminated yoke

 \vec{B}_{\perp}

P. Dular et al., 2003 L. Krählenbühl et al., 2004

 $u_{\mathrm{Fe}}, \sigma_{\mathrm{Fe}}$

 $\nu_{\rm Iso}$

Transfer function of vacuum chamber

Theory vs. Simulation

CERN | Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

Adding Quadrupoles around correctors

Combined fast/slow corrector magnet

- > Parasitic dipole component in the guadrupole for a solid yoke
- Asymmetry in the parasitic field can change the effective position of the corrector magnet.
- Lamination suppresses eddy currents in guadrupole yokes at low frequencies (high-frequency case not shown)
- > The transfer function has a bump at low frequency in the case of solid quadrupole yoke

The observations are conveyed to the magnet group

CERN Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

400

600

800

Full realistic model → corrector magnet+vacuum pipe+quadrupoles

Infinite long SS vs. 205 mm SS + Cu beam pipe in quadrupoles

SS pipe outer diameter=11.5 mm SS pipe thickness= 1 mm

> Corrector magnet yoke of 1010 stee Yoke lamination thickness 0.5 mm Quadrupole solid yoke

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

Simulations by Jan-Magnus at TEMF TU Darmstadt

Full realistic model → corrector magnet+vacuum pipe+quadrupoles

Infinite long SS vs. 205 mm SS + Cu beam pipe in quadrupoles

SS pipe outer diameter=11.5 mm SS pipe thickness= 1 mm

> Corrector magnet yoke of 1010 stee Yoke lamination thickness 0.5 mm Quadrupole solid yoke

SS beam pipe length	Without Beam Pipe	1200 mm	205 mm	148 mm	136 mm	126 mm	102 mm	90 mm
3dB bandwidth	20 kHz	7 kHz	5 kHz	4 kHz	3.5 kHz	3 kHz	2 kHz	1.5 kHz

Corrector-cable response

FOFB: Corrector-cable challenge

- Power Supply as voltage source
- Coaxial cable
 - C' = 80pF/m, L' = 57.6nH/m, R' = 0.52mΩ/km
 - Length = 200m (120nF, 17μ H) ; Z0 = 27Ω
- Magnet
 - L = 23mH ; R = 0.25Ω

Magnet and cable

- ightarrow Unobservable currents at power supply
- → Dependent on magnet cable length, cable capacitance, magnet inductance

Preliminary Power Supply Scheme

FOFB: Fast corrector power supply

- OPCUA set point for slow but large currents.
- PI controller for slow current variation
- Fast but small currents from FOFB Input
- No controller for FOFB current inside PS.
- Local lead-lag controller to shift open loop bandwidth to kHz range
 - Mainly limited by BPM noise
- Global FOFB controller to maintain fast current in the magnets

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

SISO (single input single output) closed-loop bandwidth

Latency budget

As presented in project proposal

Subsystem/Links	Delay	Comments
Beam position calculation	23 μs	3 turns maximum delay
BPM processor to BPM datahub	<0.5 <i>µs</i>	Backplane link
BPM datahub to LOC	~1 <i>µs</i>	Optical link ~ 10s of meters (10 Gbps)
LOC electronics nodes	<1 <i>µs</i>	Local data processing
LOC to GLO (two ways including encoding/decoding)	12.5 μs	Max of 1250 m (10 Gbps)
GLO controller	20 <i>µs</i>	Global data processing time
LOC to PS	~ 0.5 <i>µs</i>	Optical link ~ 10s of meters (10 Gbps)
Power supply	15 <i>µs</i>	Max input-out delay (estimate)
Corrector magnet power cable	1.5 <i>µs</i>	Max cable length 300m
Total	75 μ <i>s</i>	Anticipated budget delay

SISO simulations-update

Lead-lag component of PS

System Models for simulation

• An open-loop collective BW of $1.26 \ kHz$ and a delay of $75 \ \mu s$

- 1 kHz disturbance-rejection bandwidth (requirement)
- Analytical modelling of subsystems (Update with simulations).
- Frequent system updates with new parameters

Major delay components

- $\tau_{d,BPM}$ = 23 μs
- $\tau_{d,controller} = 20 \ \mu s$
- $\tau_{d,LOC-GLO} = 12.5 \, \mu s$
- $\tau_{d,PS-cable} = 15 \, \mu s$

Dominant BWs

- Vac. Chamber = 5 kHz
- Corr. lamination = 20 kHz
- PS+cable+coil = 1.3 kHz (limited by BPM electronics noise using lead-lag for BW shift)

Requirement of 1 kHz disturbance-rejection still achievable

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

Interaction of FOFB system with DC corrections

Interaction of FOFB system with slow correctors

DC current shift from fast to slow magnets

Philosophy: Only FOFB system \rightarrow Quasi-DC to high frequency (1 kHz) \rightarrow DC current accumulation on fast magnets

No. of slow corrector magnets > No. of fast corrector magnets → Using the larger mode space of all slow corrector magnets

Strategy: Fast corrector strength \rightarrow ORM (fast) \rightarrow BPM space

BPM space \rightarrow ORM⁺ (slow) \rightarrow Slow corrector strengths

Simulations: Time domain simulations performed in 'cpyMAD' with following approximations:

- 1- Only quadrupole random oscillations + drift
- 2- Small amplitude of misalignments and oscillations
 - \rightarrow highly linear machine
- 3- Update rate of 10 kHz

Three scenarios are simulated:

- 1- Orbit correction with only fast correctors
- 2- Orbit correction with fast corrector but shifting quasi-DC strength to slow magnets in one time step \rightarrow non-realistic case
- 3- Orbit correction with fast corrector but shifting quasi-DC strength to slow magnets in 0.5 seconds \rightarrow possibly realistic case

The residual on all BPMs is plotted here not on ID BPMs (for stability criteria \rightarrow a topic for future)

Interaction of FOFB system with slow correctors

DC current shift from fast to slow magnets

CERN | Optics tuning and corrections for future colliders workshop - Sajjad H. Mirza

Girder alignment correction

Why we need such a large (600 urad) corrector strength? (APS-U→300 urad)

Girder misalignments \rightarrow corrector relaxation to Girder movements

Consequently, going from perturbed to ideal machine

Correctors strengths \rightarrow ORM \rightarrow BPM space

BPM space \rightarrow Girder ORM \rightarrow Girder space

Slow corrector relaxation to Girders

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

Random Girder misalignments of start and end points = $\sigma = 150 \ \mu m$ cut at 2σ

Random Magnet misalignments = $\sigma = 30 \mu m$ cut at 2σ

Corrector calibration errors = 0.02% BPM calibration errors = 0.02%

Random BPM offset= $\sigma = 20 \ \mu m$

Tikhonov regularization for Girder ORM inverse

 $\mu_x = 1, \mu_v = 1$

Girder start-end alignemnts Corrector Settings Closed orbit 600 600 Errors with RMS 128.168 μ m Before download, RMS 123.6324 μ rad Before download, RMS 49.2512 μm X-Girder misalignment (μm) 400 400 Correcor Settings (μ rad) 500200200 X_{BPM} (μm) -200-200 -500 -400 -400 -600 -600 5001000 15002000 2500500 1000 15002000 25005001000 15002000 25000 0 0 Distance (m) Distance (m) Distance (m) 600 600 Errors with RMS 133.8492 μm Before download, RMS 128.6126 μ rad Before download, RMS 21.4082 μm Y-Girder misalignment (μm) 400 400 Correcor Settings (μ rad) 500200 Y_{BPM} (μm) -200 -500 -400 -400 -600 -600 5001000 15002000 25005001000 15002000 25005001000 15002000 25000 0 0

Distance (m)

Page 28

Distance (m)

Slow corrector relaxation to Girders

Random Girder misalignments of start and end points = $\sigma = 150 \ \mu m$ cut at 2σ

Random Magnet misalignments = $\sigma = 30 \mu m$ cut at 2σ

Corrector calibration errors = 0.02% BPM calibration errors = 0.02%

Random BPM offset= $\sigma = 20 \ \mu m$

$$\mu_x = 1$$
, $\mu_v = 1$

Tikhonov regularization for Girder ORM inverse

Slow corrector relaxation to Girders \rightarrow for 72 random machines

Girders correction feedback \rightarrow 3 FB scheme

Random Girder misalignments of start and end points = $\sigma = 150 \ \mu m$ cut at 2σ

Random BPM offset= $\sigma = 20 \ \mu m$

Random Magnet misalignments = $\sigma = 30 \mu m$ cut at 2σ Corrector calibration errors = 0.02%BPM calibration errors = 0.02%Corrector Settings (RMS) Girder start-end alignemnts (RMS) BPM values (RMS) 14013040 $\mu_x = 2$ $\mu_x = 2$ X-Girder misalignment $(\mu {\rm m})$ $-\mu_x = 2$ Correcor Settings (µrad) 90 00 90 90 00 $-\mu_x = 3$ $\mu_x = 3$ $-\mu_x = 3$ X-beam position (μm) 120 $-\mu_x = 5$ $\mu_x = 5$ $-\mu_x = 5$ 35110 30 100 4090 2528 10100 6 $\mathbf{2}$ 8 4 0 6 26 8 4 0 Iterations Iterations Iterations 14013526 $\mu_y = 2$ $\mu_u = 2$ $\cdot \, \mu_y = 2 \, |$ Y-Girder misalignment $(\mu {\rm m})$ 120 $\mu_y = 3$ 130 $\mu_u = 3$ Settings (μrad) $\mu_v = 3$ $\begin{array}{c} \text{X-beam position} \\ \text{m} \\ \text{57} \\ \text{5$ $\cdot \mu_u = 5$ $\mu_u = 5$ $-\mu_{v} = 5$ 100 12580 120Correcor 60 11540 110 2010518 $\mathbf{2}$ 0 24 6 8 108 100 4 6 28 0 6 4 Iterations Iterations

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

10

10

Girders correction feedback \rightarrow 3 FB scheme

Random Girder misalignments of start and end points = $\sigma = 150 \,\mu m$ cut at 2σ Random BPM c

Random BPM offset= $\sigma = 20 \ \mu m$

CERN | Optics tuning and corrections for future colliders workshop – Sajjad H. Mirza

Subsystem modelling and design is under way for a target of 1 kHz disturbance rejection bandwidth.

Simulations of the corrector magnets reveal that the eddy currents in the nearby magnets and copper pipe cause reduction in the bandwidth of the corrector magnets.

Long cables for PETRA IV corrector power supply put a challenge for current control. The power supply is planned to have a PI controller for slow action. Fast change will be taken care by the global FOFB controller.

Girder alignment is studied as an option to reduce the corrector strengths during operation.

Contact

DESY. DeutschesSajjad Hussain MirzaElektronen-SynchrotronWP 2.08eMail: sajjad.hussain.mirza@desy.dewww.desy.de