

Beam-based optimization at PAL-XFEL to maximize FEL intensity

Chi Hyun Shim

on behalf of XFEL Accelerator Department

Outline

- Introduction of PAL-XFEL
- Optimization with uncompressed electron beam
 - Beam-based alignment for undulator line
 - Undulator offset alignment / undulator gap alignment
- Optimization with compressed electron beam (~ 3 kA)
 - Lattice matching for linac and undulator line
 - Undulator tapering / phase shifter gap tuning
- Summary

Operation History of PAL-XFEL

Apr. 2011: PAL-XFEL project started

Apr. 2016: Commissioning started

Jun. 2017: User-service started

- 120 days for user (95% of availability)

2018: 140 days for user (95% of availability)

2019: 160 days for user (96.8% of availability)

2020: 170 days for user (96.9% of availability)

2021: 180 days for user (96.9% of availability)

2022: 190 days for user (97.0% of availability)

PAL-XFEL Layout & Parameters

e⁻ Energy 11 GeV e⁻ Bunch charge 20-200 pC

Slice emittance < 0.4 mm mrad

Repetition rate 60 Hz

Bunch length 5 fs – 50 fs

Peak current 3 kA

SX line switching Kicker Magnet

Undulator Line	НХ	SX
Photon energy [keV]	2.0 ~ 15.0	0.25 ~ 1.25
Beam Energy [GeV]	4 ~ 11	3.0
Wavelength Tuning	Energy	Gap
Undulator Type	Planar	Planar
Und. Period / Gap [mm]	26 / 8.3	35 / 9.0

BAS3H

SX undulator (SX1)

(~0.3-1.2 keV)

ВС3Н

L3S

DF2H

BC3S

L4

L₃B

HX undulator (HX1)

(~2.5-12.8 keV)

SSS

→XSS

10 GeV

dump

NCI

Procedure of beam-based optimization

- **✓** Uncompressed beam (on-crest acceleration)
 - ✓ Undulator beam-based alignment with different beam energies [~2h]
 - ✓ Undulator vertical offset alignment (Undulator field center) [~30m]
 - ✓ Undulator gap alignment (K tuning) [~30 m]
- **✓** Compressed beam (off-crest acceleration)
 - ✓ Preparing initial setting for specific photon energy [~1h]

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- ✓ Laser for photocathode gun, beam energy, magnet PS, rf phase, BC1 collimator
- ✓ Lattice matching for linac and undulator line [~2h]
- ✓ Undulator tapering [~30m]
- ✓ Phase shifter gap tuning [~30m]

PAL-XFEL operation schedule

Beam-based optimization process is always performed after the end of maintenance and before the start of user beam time.

Undulator beam-based alignment

P. Emma, R. Carr, and H.-D. Nuhn, NIMA **429**, 407 (1999) H.-S. Kang, H. Loos, PRAB **22** 060703 (2019)

✓ During undulator BBA, all correctors in HU1 section are turned off, all undulators are closed (minimum gap) and quadrupole strength is fixed for every beam energy

Undulator beam-based alignment

Dispersion-free orbit can be established by changing the BPM offset and QUAD mover offset

Spectrum of radiation for undulator optimization

- ✓ Uncompressed electron beam is used to minimize correlated energy spread.
- ✓ Spectrum of the radiation has to be measured to set the photon energy at the monochromator.
- ✓ Photon energy at the monochromator (DCM for HX) is selected at which the signal of detector is sensitively changed.

Undulator vertical offset scan to find B-field center

Undulator K-tuning to match same B-field

In the Exp.

→ electron beam path is fixed and undulator gap is moved.

$$f(g) = [a_1 + a_4(g - a_2)] \operatorname{erf}\left(-\frac{g - a_2}{a_3}\right) + a_5 + a_6 g$$

 a_2 is the determined gap distance by fitting with the error function

T. Tanaka *et al.*, PRAB **15**, 110701 (2012) H.-S. Kang, H. Loos, PRAB **22** 060703 (2019)

Lattice matching sections at PAL-XFEL

H.-S. Kang et al., Proc. FEL2012, pp. 309-312.

Lattice matching for HL1

Lattice matching for HL1 (before)

Lattice matching for HL1 (after)

Lattice matching for HL4

Lattice matching for HL4 (before)

Lattice matching for HL4 (after)

Lattice matching for HU1

Lattice matching for HU1 (before)

Lattice matching for HU1 (after)

Undulator tapering

energy loss due to the resistive wakefield effect → linear

energy loss due to the FEL lasing → quadratic

self-seeding section

Electron beam energy at the i-th undulator

$$\begin{cases} E_{i} = E_{init} + \frac{\Delta E_{linear}}{N_{tot}} \cdot i & (i < n_{quad,start}) \\ E_{i} = E_{init} + \frac{\Delta E_{linear}}{N_{tot}} \cdot i + \frac{\Delta E_{quadratic}}{\left(N_{tot} - n_{quad,start}\right)^{2}} \cdot \left(i - n_{quad,start}\right)^{2} & (i \ge n_{quad,start}) \end{cases}$$

Resonance condition

$$K = \sqrt{2 \cdot \left(\frac{2\gamma^2 \lambda_{\rm r}}{\lambda_u} - 1\right)}$$

Examples of undulator tapering

Phase shifter between undulators

$$s = \frac{1}{2\gamma^2} \left(L_{int} + \left(\frac{e}{mc} \right)^2 \cdot PI_{PS} \right) = n \times \lambda_u$$

To match the phase between FEL pulse and electron beam

Phase shifter gap tuning results

3.2 mJ at 7.13 keV FEL – Record of highest pulse energy at PAL-XFEL

- ✓ 7.13 keV SASE FEL
- ✓ E_{beam} : 7.325 GeV
- Norm. emittance at injector:0.35 μm (hor) / 0.31 μm (ver)
- Norm. emittance at HU1:0.35 μm (hor) / 0.31 μm (ver)
- ✓ Peak current: 2.8 kA
- ✓ 19 (6+13) undulators are used to optimize FEL intensity
- ✓ XFEL pulse duration: 36.0 fs (FWHM)

 measured by using cross-correlation method
 at self-seeding section

Results of FEL tuning for beamtime (2022. 01. 12)

Summary

✓ Beam-based optimization process is performed to maximize the FEL intensity after the end of major maintenance in summer/winter and before the start of every user beam time.

✓ Alignment process for undulator line
 (quad. mover position, cavity-bpm offset, undulator vertical offset, undulator gap for identical B field)
 is carried out by using un-compressed electron beam

✓ Lattice matching, undulator tapering, and phase shifter gap scanning are carried out by using compressed electron beam (~ 3 kA)