

Status of optics tuning simulations in the CEPC

Yiwei Wang, Bin Wang, Yuan Zhang, Sha Bai, Jiyuan Zhai, Yuanyuan Wei for the CEPC Accelerator Physics Group

Content

- Introduction
- Lattice design requirement of the CEPC collider ring
 - Interaction region
 - RF region
 - ARC region
- Dynamic aperture w/o errors
- Error correction and dynamic aperture w/ errors
- Conclusions

Overall design requirement of the CEPC collider ring

- SR power per beam 30 MW (50 MW upgradable), 100 km, 2 interaction points
- Higgs mode hold the 1st priority and compatible with the ttbar/W/Z modes.
- Compatible with SPPC: 100km, section length, two machines share the most tunnels

Lattice design requirement of the CEPC collider ring

- Basically 2 folded symmetry
- 2 interaction regions @ IP1 and IP3
 - crab waist collision
 - local chromaticity correction for the interaction region
- 2 RF acceleration regions @ IP2 and IP4
 - shared cavities for two beam @ ttbar, Higgs
 - flexible switching between compatible modes
- 8 arc sections
 - dual aperture dipole and quadrupole magnets
- 4 short straight section
 - on/off axis injection regions for different modes
 - beam dumping, gamma source
- Providing polarized beam*

Ref: CEPC CDR, arXiv:1809.00285, 2018; K. Oide, arXiv:1610.07170; M. Zobov et al, Phys. Rev. Lett. 104, 174801(2010);

CEPC Design Parameters

	Higgs	Z	W	$tar{t}$	
Number of IPs			2		
Circumference (km)		1	00.0		
SR power per beam (MW)			30		
Half crossing angle at IP (mrad)		1	6.5		
Bending radius (km)		1	0.7		
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	24.23	5.98	1.23	
Bunch number	268	11934	1297	35	
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)	
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0	
Beam current (mA)	16.7	803.5	84.1	3.3	
Phase advance of arc FODO (°)	90	60	60	90	
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71	
Beta functions at IP β_x^*/β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7	
Emittance $\varepsilon_r/\varepsilon_v$ (nm/pm)	0.64 /1.3	0.27 /1.4	0.87 /1.7	1.4 /4.7	
Betatron tune v_r/v_v	445/445	317/317	317/317	445/445	
Beam size at IP σ_{r}/σ_{v} (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6 /2.2	1.0 /1.7	1.2 /2.5	2.0 /2.6	
Beam-beam parameters $\xi_{\rm r}/\xi_{\rm p}$	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.12	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune ν_s	0.049	0.035	0.062	0.078	
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	82/2800	60/700	81/23	
Beam lifetime (min)	20	80	55	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5	

-βy* and emittance chosen for luminosity -adequate Ne for the luminosity and achievable energy acceptance for lattice design

Final quadrupoles for all modes

- Higgs running keep the 1st priority
 - Strength of other modes doesn't exceeded the one of Higgs mode.
- The parameters near the IP are chosen based on a trade-off between the beam dynamics and the machine detector interface.

	QD	QF
Z	Q1A	Q1B
W/H	Q1A+Q1B	Q2
ttbar	Q1A+Q1B+Q2	add quad Q3A and Q3B

Quadrupole	I [m]	Distance from	Strength [T/m]			
	L [m]	IP [m]	tŧ	Higgs	W	Z
Q1AIRU	1.21	1.9	-141	-141	-94	-110
Q1BIRU	1.21	3.19	-59	-85	-56	+65
Q2IRU	1.5	4.7	-51	+95	+63	0
Q3IRU	3	7.2	+40	0	0	+2
Q1AIRD	1.21	-1.9	-142	-142	-95	-110
Q1BIRD	1.21	-3.19	-64	-85	-57	+65
Q2IRD	1.5	-4.7	-47	+96	+64	0
Q3IRD	3	-7.2	+40	0	0	+2

	L*	LQ1	LQ2	GQ1	GQ2	d
	[m]	[m]	[m]	[T/m]	[T/m]	[m]
CDR	2.2	2.0	1.5	-136	111	0.3
TDR	1.9	1.22/1.22	1.5	-141/-85	+95	0.3

Lattice design of the interaction region

Crab waist collision, local chromaticity correction, asymmetric interaction region

- Up to 3rd order chromaticity is corrected with pairs of main sextupoles, phase tuning and additional sextupoles respectively.
- Main resonance driving terms (RDT) due to sextupoles in 3rd and 4th order Lie operators are cancelled.
- The tune shift due to the finite length of the main sextupoles is corrected with additional weak sextupoles.

RF region Layout

- 1st priority of the Higgs running and switching between different modes
- Shared cavities for two beam @ Higgs, ttbar;
 Bunches filled in each half rings
- Independent cavities; bunches filled in each whole rings for the W and Z
- Maximize the performance and flexibility of future circular electron positron collider

Peak luminosity at different stages with SR power for 30/50MW per beam

Luminosity/IP [10^34/cm^2/s]	Higgs	Z	W	ttbar
Stage 1	5/8.3	38 (10MW limit)	16/26.7	-
Stage 2	5/8.3	115/192	16/26.7	-
Stage 3	5/8.3	115/192	16/26.7	0.5/0.83

Stage 1: H/W/LL-Z (and HL-H/W upgrade) Outer Ring Inner Ring Stage 2: HL-H/W/Z (HL-Z upgrade) Outer Ring Inner Ring Stage 3: HL-H/W/Z/ttbar (ttbar -upgrade) Outer Ring ttbar Inner Ring \mathbf{Z} ttbar 650 MHz 1-cell cavity 650 MHz 5-cell cavity 650 MHz 2-cell cavity

1 cavity in 1 CM

4 cavities in 1 CM

6 cavities in 1 CM

Lattice design of the RF region

- The lattice was designed to satisfy the RF system design for different energies.
 - bypass and section length for different RF stages, small average beta functions to reduce the multi-bunch instability

Lattice design of the ARC region

- FODO cell to provide a large filling factor.
- 90/90 degrees' phase advances for the Higgs and ttbar modes due to the emittance and nonlinearity cancelation.
- 60/60 degrees' phase advances for the W and Z modes to fulfil the collective instability requirement.
 - suppress the impedance induced instability at Z mode
 - increase stable tune area if considering beam-beam effect and impedance consistently at W and Z modes
- The distance 0.35m and opposite polarity between two beams fulfill the requirement technical design of the twin-aperture of dipoles and quadrupoles.

Dual aperture quadrupole and bend with opposite polarity in two ring

Optimization of ARC aberration for Higgs/ttbar modes

- Four –I sextupole pairs scheme for Higgs & ttbar modes
 - With small 2nd order chromaticity esp. for the horizontal plane
 - 2nd order chromaticity for the vertical plane generated in the ARC region are further corrected with IR knobs.

Scheme with four -I sextupole pairs, T. Bian, PhD thesis 2018, IHEP

Optimization of ARC aberration for W/Z

- The distribution of sextupoles for Higgs & ttbar mode allowed to select —I sextupole pairs for W &Z modes.
- Cancellation of main aberration has period of 23*3 cells. Give a good start point for the dynamic aperture optimization.

Lattice design of the CEPC half ring

Vertical emittance generated by solenoid field

- The detector solenoid are compensated locally with anti-solenoids
 - 3T for tt^7 Higgs/W, 2T for the Z
 - cancel the ∫Bzdz between the IP and the faces of the final quadrupole
 - exists a transverse fringe field esp. at the fringe of anti-solenoid
 - The vertical emittance increases due to the fringe field of the anti-solenoid combined with the horizontal crossing angle.
- The solenoid field induced vertical emittance fulfill the parameter list.

Vertical emittance due to the solenoid field

	ttbar 3T	Higgs 3T	W 3T	Z 2T
EmitY nominal (pm)	4.7	1.3	1.7	1.4
EmitY (pm)	0.04	0.41	1.35	1.07

IR optics with solenoid for Higgs energy

Energy sawtooth effects and correction

- With only two RF stations, the energy sawtooth is around ± 0.4 % @ H and 1.3 % @ ttbar
- The closed orbit distortion in CEPC collider ring is around 1 mm and becomes 1 um after tapering* the magnet strength with beam energy.
 - require adjusting range of magnets strength $\pm 2.5\%$ with the trim coil

^{*}Ref: CEPC CDR, arXiv:1809.00285, 2018

Dynamic aperture requirement

by Y. Zhang, X. H. Cui, Y. W. Wang

The dynamic aperture requirement comes from the horizontal injection parameters, beam lifetime for the top-up injection.

	ttbar	Higgs	W	Z
Horizontal Emittance in collider/booster [nm]	1.4 / 2.83	0.64 / 1.26	0.87 / 0.56	0.27 / 0.19
DA requirement from injection	$11 \sigma_x \times 7 \sigma_y$ off axis	$13.5 \sigma_x \times 7 \sigma_y$ off axis $7 \sigma_x \times 7 \sigma_y$ on axis	$8.5 \sigma_x \times 5 \sigma_y$ off axis	$11 \sigma_x \times 5 \sigma_y$ off axis
Energy acceptance requirement [%]	2.0	1.6	1.2	1.0
Beam lifetime (mainly bhabha and beamstrahlung) [min]	18	18	21	72

Dynamic aperture @ Higgs and ttbar

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- Higgs case optimized with 256 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advances
- ttbar case optimized with 64 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advances

Dynamic aperture @ Z and W

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- Higgs case optimized with 128 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advances
- ttbar case optimized with 128 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advances

Solenoid effect on Dynamic aperture

The anti-solenoid cancel the ∫Bzdz between the IP and the faces of the final quadrupole.

- Ander Ma, Yingshun Zhu et al
- The Twiss function distortion due to solenoid field was corrected with final quadrupoles.
- **■** The solenoid effect on the dynamic aperture is small.

Effects included in tracking

Synchrotron motion

Radiation loss in all magnets

Tapering

Crab waist sextupole

Maxwellian fringes

Kinematic terms

Finite length of sextupole

Solenoid

Higgs without solenoid

Higgs with solenoid

Correction scheme for magnets errors

- Correction of the closed orbit distortion
 - Correction of the closed orbit distortion (COD) with sextupoles off is made firstly.
 - Turn on the sextupoles and perform COD correction again.
 - Orbit correction is applied using orbit response matrix and SVD method.
- Dispersion correction
 - With dispersion free steering (DFS): orbit manipulation by knob correctors.
- Beta-beating correction
 - Correct the beta functions with sextupoles turned on based on AT LOCO
- Coupling correction
 - Both coupling and vertical dispersion are controlled.
 - Using the trim coils of the sextupoles, which providing skew-quadrupole field, to perform emittance tuning for CEPC.

Error assumption

- With assumption of 100 um transverse misalignments
- BPMs placed at each quadrupoles
- H/V correctors placed beside focusing/defocusing quadrupoles

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{\rm z}$ (mrad)	Field error
Dipole	0.10	0.10	0.10	0.01%
Arc Quadrupole	0.10	0.10	0.10	0.02%
IR Quadrupole	0.10	0.10	0.10	0.02%
Sextupole	0.10*	0.10*	0.10	0.02%

*implement beam-based alignment techniques to reach rms offsets in the order of 10 um with respect to the beam

- with a large beta* lattice
- with quadrupole coils in the sextupoles
- 10um is possible as O(BPM resolution)=1um

Result of Higgs and Z lattice functions

The RMS orbit, dispersion and beta-beating of the whole ring are controlled after the global corrections.

Orbit and optics after corrections

The RMS orbit, dispersion and beta-beating of the whole ring for the Higgs/Z/W/ttbar modes are controlled after the global corrections.

RMS	Higgs	${f Z}$	W	$tar{t}$
Orbit (µm)	< 50	< 50	< 50	< 50
Dispersion (mm)	1.8/0.9	2.8/1.4	2.7/1.8	0.6/0.3
Beta-beating (%)	1.0/2.8	2.0/3.0	0.5/2.5	1.1/1.2

Emittance and dynamic aperture with error @ Higgs

Dipole

Arc Quadrupole

IR Quadrupole

Sextupole

0.10

0.10

0.10

0.10*

0.10

0.10

0.10

0.10*

0.10

0.10

0.10

0.10

- The emittance coupling fulfill the requirement (<0.2%)
- All of 100 lattice seeds with errors are corrected.
- 90% lattice seeds with error correction achieve $11\sigma_x \times 27\sigma_v \times 1.6\%$ after global correction.

Yiwe Wa Correction with more errors and the IR tuning are undergoing rs Workshop at CERN

Field error

0.01%

0.02%

0.02%

0.02%

Emittance and dynamic aperture with error @ Z

- The emittance coupling fulfill the requirement (<0.5%)
- All of 100 lattice seeds with errors are corrected.

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{\rm z}$ (mrad)	Field error
Dipole	0.10	0.10	0.10	0.01%
Arc Quadrupole	0.10	0.10	0.10	0.02%
IR Quadrupole	0.10	0.10	0.10	0.02%
Sextupole	0.10*	0.10*	0.10	

Emittance and dynamic aperture with error @ ttbar

delta

- The emittance coupling fulfill the requirement (<0.34%)
- All of 100 lattice seeds with errors are corrected.

ey/ex (%)

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{\rm z}$ (mrad)	Field error
Dipole	0.10	0.10	0.10	0.01%
Arc Quadrupole	0.10	0.10	0.10	0.02%
IR Quadrupole	0.10	0.10	0.10	0.02%
Sextupole	0.10*	0.10*	0.10	

Beam lifetime of lattice + beam beam+Beamstrahlung

Y. Zhang, Y. Wang, D. Wang, H. Geng, Z. Duan

- The beam lifetime including both beam-beam and lattice are optimized with large number of nonlinear knobs with algorithm of multi-objective differential evolution (MODE)#
- Further check of beam lifetime with bare lattice + beam beam (weak-strong) + beamstrahlung fulfill the requirements of the $H/W/t\bar{t}$ modes. Beam lifetime study of Z mode is on the way.

	ttbar	Higgs	W
Beam lifetime requirement for top-up injection [min]	18	18	21
Bhabha lifetime [min]	81	39	60
Required lattice + beambeam + beamstrahlung beam lifetime [min]	24	34	32
Simulated lattice + beambeam + beamstrahlung beam lifetime [min]	278	139	139
Crab sextupole strength [%]	49	80	80

[#]J. Wu, Y. Zhang, Q. Qin, Y. Wang, C. Yu, D. Zhou, NIMA 959 (2020) 163517.

J. Wu, Y. Zhang, Q. Qin, doi:10.18429/JACoW-IPAC2019-MOPGW051, IPAC19.

Y. Zhang et al, doi:10.18429/JACoW-eeFACT2018-TUYBA04, eeFACT2018.

Summary

- Lattice of the CEPC collider ring design fulfill the requirements of the parameters list, geometry and key hardware.
- Dynamic aperture w/ main errors for H/Z/tt modes achieve the requirements from the top-up injection. DA study of W mode is on the way.
 - Correction with more errors and the IR tuning are undergoing.
- Further check of beam lifetime with bare lattice + beam beam + beamstrahlung fulfill the requirements for the H/W/tt̄ modes. Beam lifetime study of Z mode is on the way.

Backup