


L4 UNIVERSITY OF

&7 LIVERPOOL

Facilities Council

Rigid Waist Shift for Local Coupling Correction in
the LHC IRs

2023.06.27

Science and

Felix Soubelet

(For more details see: PhysRevSTAB.26.051001)

. 0000111110 010 01010100101010

1010101100011 10101 0101010010001

0101 00T onion 0101 / \

(L R

1001 olon Mol fion 0101 ASAR

o g g I V4
The Cockeroft Institute 1010101100011 OT10 oom 0101 \

of Accelerator Science and Technology 0010100000 0001 1000 1100



Talk Outline

Intro & Context.

Overview of IR Local Coupling in the LHC and Limitations of our Existing Methods.

Developped Solution: Rigid Waist Shift.

Experimental Results from the LHC 2022 Commissioning.

Relevance to other colliders & Conclusions.



The Missing ALICE Events of 2018 (1/2)
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* In the late 2018 ion run “missing collisions 20
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Figure: IP2 vs IP1 particle distributions from tracking simulations with a
coupling bump implemented at IP2. Courtesy of T. Persson.



The Missing ALICE Events of 2018 (2/2)

* We can usually think of coupling’s effect on
the beam as tilting the beam ellipse.

* In the LHC we operate with round beams.

» Effect of coupling is felt as an increase of
beam size.

—— Beam 1 Kis [m~2]
30 —— Beam 2 T .. 0
Sm 1073
------------------- 2x1073
1.5} //'/./' ‘\.\.\
£ : \,
; .,./ \\
& ; i/ \
0 i \
5 o00f | |
— \ i
[— \_ /
> \ /
\, /
N ;
N 7/
—-1.5¢ \\\ /_/'
-3.0f] R
—3.0 ~15 0.0 1.5 3.0
X [107> m]

Figure: Transverse beam ellipses reconstructed at IP5 for different
strengths of a coupling bump around the IP.



Local Linear Coupling to Luminosity

* Similar coupling bumps at IP1 or IP5 would
lead to serious drops in luminosity.

* In case of the HL-LHC with even more
squeezed beams, the situation would be
drastically worse.

» There is a need for a reliable way to measure
and correct linear coupling at the IPs.
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Figure: Relative RMS beam size increase and instant luminosity at IP1 for
different strengths of coupling bump around the IP.



LHC IR Skew Quadrupole Correctors

* We have 1 skew quadrupole corrector on
each side of the IPs.

Lead end
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b1/a1 b1/a1 a2 b1/a1 Linear correctors
b3 @3 Non-linear correctors
b b4
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Figure: Schematic layout of triplet magnets and linear + non-linear
correctors in the LHC experimental insertions.

» How do we determine how to power
them?
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Figure: Layout and 8—functions of IR5, and location of the skew quadrupole

correctors.



Local Corrections in the LHC
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Figure: SbS correction of the imag. part of the f1901 RDT in the IR1

segment during the 2022 commissioning.
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Current Methods’ Limitations

e SbS corrections are very important as they allows us
to safely squeeze to low " optics.

* However:

* Difficult to get good coupling RDT measurements in the
IPs vicinity.

* Does not allow distinguishing the contributions of left
and right corrector magnets -> how to balance?

* There is no information (no BPM) at the IP location.

* K-modulation is robust against local coupling
(PhysRevSTAB.23.094001, PhysRevSTAB.20.011005).
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Figure: Propagation (B1) of the measured |f1001| and |f1010| with SbS

around IP1 for two different correction settings.



Quick Recap So Far

To summarize
* Control of local linear coupling in the LHC IRs is important.
* Current methods do not provide a way to measure coupling at the IP.

* Existing SbS corrections are crucial for squeezing to collision optics and safe machine operation, and
cannot be removed.

We need two things:
» A way to adjust the coupling at the IP without affecting the rest of the machine.

» A reliable way to measure coupling at the IP so we can determine corrections.



Tool 1: The Colinearity Knob

* Close to difference resonance, contribution of
individual sources:

ACT| = | =20 VBYBY I yﬂ\

» Powering setting of left and right correctors that
acts anti-symmetrically.
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Table: Definition of 1 unit of the colinearity knob.
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Figure: Effect of the colinearity knob on the f;,01 coupling RDT, with and
without global coupling.
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Tool 2: The Rigid Waist Shift

* Rigid Waist Shift = moving all 4 betatron waists
simultaneously.

* Achieved by unbalancing the powering knobs of
the triplets left and right of the IP.

Bx,y [km]

Circuit Powering A
KQX.R[IP] —0.5%
KQX.L|IP] 0.5%

—200 ~100 ' 200
Distance to IP1 [m]

Table: Definition of one unit of the rigid waist shift

knob. Figure: Change of 8—functions in the IR when applying a RWS (dashed lines)
> Allows us to break the (anti)-symmetry of the compatred to nominal optics (full lines).

optics functions in the IR.
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Rigid Waist Shift — Application (1/4)
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Figure: Coupling RDTs in the IR from a closed coupling bump,

with and without an RWS.
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Rigid Waist Shift — Application (2/4)

. Breaking the Symmetry of the IR —e— Waist Shift Applied No Waist Shift
breaks the locality of any coupling bump.
6.0
* The influence of truly local sources is leaked to s
RDTs throughout the machine and can be T
picked up as the |C~| from turn-by-turn =
measurements. |
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» Opens the possibility to probe local coupling
errors through global coupling. 0.0 , , , , ,
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Figure: Impact of a fully closed coupling bump on the |C~| with and
without an RWS.
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Rigid Waist Shift — Application (3/4)
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Figure: Resulting beam size increase for identical settings of tilt error Figure: Resulting |C ™| for various combinations
and colinearity knob, but without an RWS. of tilt error and colinearity knob settings, when applying an RWS.

* Great correlation across the parameter space.

» Settings minimizing the |C ™| with an RWS also minimize the beam size growth from local coupling without an RWS.
15
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Rigid Waist Shift — Application (4/4)

A more realistic scenario:

* Local tilt errors in triplets
* Tilt errors in Q4-Q6.
* Tilt errors in other IR’s triplets.

N
(@)
o

—— y/&xB12 + €yB21
|C™|

150}
* Global coupling sources so that |C~ |~ 1072,

* Rountine of global coupling correction so that
|C~|~3 %1073,

e Parametric scan with/without RWS.
* Again, great correlation (0.96 Pearson coefficient).

100}

IP Beam Size Increase w/o RWS [%]

50t
» Thanks to the RWS: ) S ]
v" We can probe the local errors through global —20 -15 -10 -5 0 5 10 15 20
coupling. Unit Setting of the Colinearity Knob

v" We can find settings to minimize coupling at IP.
Figure: Resulting |C~| under an RWS and increase in IP1 beam size without
RWS. Black dotted line represents a 1% increase in beam size.
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Determining Corrections (1/2)

* We want to compensate for local sources only,
not global or coupling emerging from the RWS
setup.

* We replicate the global coupling from the
machine in simulations.

* Compare measured |C~| to these simulations.

e Simulations include no local errors but
measurements do.

» Find how to match them with the colinearity
knob, find the setting that compensates for
these local errors.

4

- —e— W.ith Local Errors
No Local Errors

—10 -5 0 5 10 15 20
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—20 -15

Figure: Resulting |C~| under RWS from simulations with and without local
sources included.
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Determining Corrections (2/2)

* We want to compensate for local sources only,
not global or coupling emerging from the RWS W Nominal ®=m Errored MM Corrected
setup. 125

* We replicate the global coupling from the o

machine in simulations.

. . 75¢
* Compare measured |C~| to these simulations.
50t
e Simulations include no local errors but
measurements do. 55

Size Relative to Nominal Scenario[%]

» Find how to match them with the colinearity
knob, find the setting that compensates for
these local errors.

Horizontal Vertical

Figure: Relative IP beam sizes when compared to the nominal scenario when
inputting the local errors used in the study (prev. slides) and after applying
the suggested correction.
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Another Recap

We have tools to tackle our needs

v The colinearity knob allows us to adjust coupling at the IP without affecting the rest of the machine
nor SbS corrections.

v The RWS allows us to probe local errors and find a correction setting of the colinearity knob to
minimize coupling at the IP.

What’s left to do?
* Applying all of this in the machine.

* Results below are from the LHC 2022 commissioning.



Local Coupling: Experimental Procedure

1. Use SbS to find and apply corrections that compensate for the IR’s contribution.
2. Apply an RWS and perform a scan of the colinearity knob for each beam.
3. Compare scan results to simulations to determine correction settings.

4. Trim in the corrections.
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Experimental Measurements (1/2)

—— Simulation
—— Measurement
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Figure: Measurement scan done at IR1 for beam 2 and simulations for the
same setup.

ations
easurements
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Figure: Measurement scan done at IR1 for beam 1 and simulations for the
same setup.
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Experimental Measurements (2/2)

—— Simulations
—— Measurements

A=1.5

<>

Suggested Ak [10_4m_2]

Scan

Beaml Beam?2
IR1 —3.5 -3
IR5 —2 —1.5

—15 —10 =5 0 5 10 15
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Figure: Measurement scan done at IR5 for beam 2 and simulations for the
same setup.

Table: Correction adjustments suggested by Rigid Waist Shift scans, on
top of the existing Segment-by-Segment corrections that were in the
machine.
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Trimming Corrections

* Trim of the suggested corrections were done
at end of fills, with collisions.

* Measurements done at f*=30cm and
B*=42cm.

* Subsequent luminosity changes were
observed.

Luminosity Gain [%]

Experiment
B*=30cm pB*=42cm
ATLAS (IP1) 9.7 0.2
CMS (IP5) 3.5 1.5

Table: Instantaneous luminosity gains observed at the main
experiments ATLAS and CMS from trimming the suggested
corrections.
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Figure: Trim of the colinearity knob setting and observed IP1 instantaneous
luminosity change at B* = 30cm.
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What about other colliders?

Typical collider uses quadrupole triplet / doublet for
final focusing.

IP to Q1 phase advance (with L* > £7):

o=, gt e (7)o ()
B(s) B B

0
)

Similar issues present:
* (Can easily get a closed coupling bump
* No observation device at the IP
* Phase advance from element to element ~0

Lfé%se are seen in FCC-ee, FCC-hh, HL-LHC, SuperKEKB

The RWS should be able help ©
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Figure: Phase advances relative to IP5 in FCC-ee V22 lattice, Z
operation, 45.6GeV and f* = 10cm.
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Conclusions

e A good correction of local coupling in the LHC IRs is essential.

* Existing correction methods are crucial for safe machine operation & squeezing of the beams but do not
provide an accurate way to measure and minimize coupling at the IP locations.

» We developed a new method to determine these correction settings that relies on the application of a Rigid
Waist Shift.

v' The method was implemented during the LHC 2022 commissioning, and corrections were successfully
determined from beam-based measurements.

v’ Determined corrections were applied in the machine, and lead to substantial instantaneous luminosity gains.

v Seems to be relevant for other existing and future colliders.



Thank you for your attention!

Any Questions?
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Linear Coupling in the LHC
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> LOOkmg at RDTs across the machine is not Figure: Similar looking coupling RDTs from two LHC measurements in 2022

enough to get information on coupllng at IPs, (top vs bottom). One scenario leads to a 20% instant luminosity decrease at
we need to look locally. IP1 compared to the other.
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Local Corrections in the LHC

* We use the Segment-by-Segment (SbS) technique.
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Figure: lllustration of a phase correction with the segment-by-segment technique.
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Caveat — Optics Impact of the RWS

* RWS sends a B-beating wave through the
machine.

* Get to ~20-30% B-beating depending on the
beam and plane.

* Reduces the effectiveness of correction knobs.

* Changes the impact of probed errors (namely
skew quadrupolar impact).
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Figure: Simulated 8-beating across beam 1 from applying an RWS at
IP1.
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Caveat — Optics Impact of the RWS

 RWS sends a B-beating wave through the
machine.
* Getto ~20-30% B-beating depending on the
beam and plane.
* Reduces the effectiveness of correction knobs.

* Changes the impact of probed errors (namely
skew quadrupolar impact).

» Can rematch the optics:

v' Rematching knobs designed using independent
guadrupoles Q4-Q10.

v Minimize the impact on the optics to ~5% B-
beating aka control we have in operation.
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Figure: The beam 1 additional 8-beating observed in the machine from an

RWS in IP5, before and after applying the optics rematching knob.
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Reproducing the Machine’s Coupling —— Coupling Knobs

* Need to best reproduce the coupling in the
machine in simulations.

* |n studies: The distribution of errors has
little influence as long as the |C ™| is the
same.

» In the LHC: we did so by applying the
correction knobs used in the machine.
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Figure: Minimization of the with an RWS for various distributions of sources
for the global coupling.
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