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The Circular Electron Positron Collider (CEPC)
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• Basic design
• As a Higgs(120 GeV), Z (45.6GeV) &

W(80GeV) Factory
• Upgradable to High Lumi Z & ttbar(175 GeV)
• Compatible with SppC

• Progress
• CDR released in 2018
• TDR to be delivered in 2023
• Beam polarization as a chapter in Appendix

• Transverse polarization for resonant
depolarization at Z & W

• Longitudinally polarized colliding
beams at Z-pole (and beyond)

Linac: 10 GeV (CDR) -> 30 GeV (TDR)

[1] Slides of Beam Polarization Studies presented on CEPC
Accelerator TDR Review Meeting 14/06/2023, Hong Kong
https://indico.ihep.ac.cn/event/19262/contributions/135019/attach
ments/69261/83123/CEPC_polarization_study_v5_uploaded.pptx

https://indico.ihep.ac.cn/event/19262/contributions/135019/attachments/69261/83123/CEPC_polarization_study_v5_uploaded.pptx


Beam polarization in the collider rings
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• Colliding bunches: top-up injection• Non-colliding “pilot” bunches: decay mode

time

Polarization

Bunch charge

CEPC CDR parameters 45.6 GeV (Z, 2T) 80 GeV (W) 120 GeV (Higgs)

Polarization build-up time w/o radiative depolarization 𝜏𝐵𝐾𝑆 (hour) 253 15.2 2.0

Beam lifetime 𝜏𝑏 (hour) 2.5 1.4 0.43

If 𝜏𝐷𝐾 ≫ 𝜏𝑏, then 𝑃avg ≈ 𝑃inj

• Self-polarization can be utilized for Resonant Depolarization (RD) measurements using pilot bunches
• Employ asymmetric wigglers to reduce the polarization time @Z [1]

• To achieve a high-level polarization for colliding bunches without significantly sacrificing luminosity [2]
• Injection of polarized beams is mandatory

[1] The FCC-ee Energy and Polarization Working Group, arXiv:1909.12245v1, 2019.
[2] Zhe Duan, talk on 2nd FCC EPOL Workshop, Sep 29, 2022
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Modification of CEPC for RD measurements
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Asymmetric wigglers

- B+=1.8T=-5 B-

- cell length=1.5m

- 16 such cells

• Self-polarization of >20% achievable in 10 min [1]
• Consistent with the requirements of RD measurements,

but not sufficient for top-up injection of colliding bunches

Positron damping ring
1.542 GeV

• Polarized e- source can supply ~ 85% polarized e- bunches that satisfy the needs of CEPC (SLC/ILC/EIC) 

[1] Z Duan et al., Proc. eeFACT 2022 & IPAC 2023.



Modification of CEPC for longitudinal polarization
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• It is important to understand the depolarization effects at ultra-high beam energies.
• Booster:    depolarization due to spin resonance crossings during acceleration
• Collider ring:    radiative depolarization

Spin rotators at Z-pole 
W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
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Spin-orbit coupling resonances in circular accelerators
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• In a planar ring without solenoids, ො𝑛0 could deviate from 
vertical near integer (imperfection) resonances  𝜈0 = 𝐾, 
characterized by 

• ො𝑛 deviates from ො𝑛0 near spin resonances

• For intrinsic resonances 𝜈0 = 𝐾 = 𝑘 ± 𝜈𝑦

First-order parent spin resonances:  

• Misalignments:  quad ΔY & dipole roll
• Random:   zero mean
• Systematic:  “smoothed” vertical 

positioning, uneven settling, etc
• Orbital correctors



General lattice structure of CEPC booster & collider
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• Approximately period-8
• Each arc contains hundreds of standard (FODO) cells
• Arc region covers ~ 80% of circumference in both rings

CEPC booster

• νB is the total νy in all standard arc cells
• 𝜂arc is the fraction of total bending angle from arc 

standard cells over 2π



Spin resonance structure: Intrinsic resonance strength
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𝜖 ≈ 𝜁𝑃 |𝜖arc + 𝜖ss + 𝜖DOM|

𝜖arc = |𝜖𝐹𝑂𝐷𝑂 | |𝜁𝑀|

• Near super strong resonances, 𝜖arc dominates
• Away from super strong resonances, 𝜖ss +

𝜖DOM becomes more important
• For small K << νy the phasor includes a

slow wave KΦ and a fast wave νyφy , 
leading to effective cancellation among all 
cells (arc, SS and DOM) 

• Symmetry breaking leads to relatively weak 
resonances.

𝜖ss = 0 for integer vertical phase advance & identical cells

due to P superperiods

due to M identical FODOs 
in each arc

Intrinsic resonances:  𝜐0 = 𝐾 = 𝑘 ± 𝜐𝑦
Super strong resonances:

[1] S. Y. Lee, Spin dynamics and snakes in synchrotrons (World Scientific, 1997).
[2] T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).

CEPC booster as an example



Taking FCC-ee collider ring as an example
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I. Koop, Intrinsic resonances in FCC-ee, EPOL Meeting 15/12/2022.

K. Oide, 26/06/2023  

Super strong intrinsic resonances 
near ν0 = 8 * 90 * ¼ * 92/90  = 184



Spin resonance structure: Imperfection resonance strength
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• For a specified k, its contribution follows a similar 
behavior of intrinsic resonance

• Spectrum of fk depends on the error sources & 
closed-orbit correction scheme

• Most important terms are near k = [νy] leading to 
super strong resonances

• There tends to a wider plateau around each peak as 
a result of contributions from different k

Imperfection resonances:  𝜐0 = 𝐾
Super strong resonances:

CEPC booster as an example

[1] S. Y. Lee, Spin dynamics and snakes in synchrotrons (World Scientific, 1997).
[2] T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).
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Depolarization in the booster
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• The spin tune 𝜐𝑠 ≈ 𝜐0 ≈ 𝑎𝛾 changes and could cross spin resonances 𝜐𝑠 = 𝑘 + 𝑘𝑥𝜐𝑥 + 𝑘𝑦𝜐𝑦 + 𝑘𝑧𝜐𝑧
• The spin resonances 𝜐0 = 𝑘 are spaced by 440 MeV for e+/e-

• The non-adiabatic crossing could vary 𝐽𝑠 = Ԧ𝑆 ∙ 𝑛 and lead to depolarization [1]
• Spin resonance strength ε

• Acceleration rate 𝛼 ~10−6
𝑑𝐸

𝑑𝑡
GeV/s 𝐶[km]

• Δ|P| < 1% in the regimes of fast crossing & slow crossing
• Previous studies suggested using Siberian snakes to maintain polarization for future 100km-scale boosters[7]

[1] Froissart and Stora, NIM 7, 297 (1960) [2] A. K. Barladyan, et al., PRAB 22, 112804, (2019)
[3] S. Nakamura, et al., NIM A 411, 93 (1998) [4] T. Khoe et al., Part. Accel. 6, 213 (1975)
[5] Configuration Manual: Polarized Proton Collider at RHIC, 2006 [6] V. Ranjbar, et al., PRAB 21, 111003 (2018)
[7] I. Koop et al., Phys. Part. Nucl. Lett. 13. 7 (2016); S. Nikitin, IJMPA 34, 1940004(2019); IJMPA 35, 2041001 (2020).

Fast crossing Slow crossing

Spin precession

Orbit motion in a helical snake @ RHIC

Data from Ref [2-6]



Setup of CEPC booster lattice
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• 60 imperfection lattice seeds
• Misalignment error & field error, scan BPM offset: 30μm ~ 180 μm
• Closed orbit correction & tune correction

• Multi-particle tracking in Bmad
• Energy and RF ramping in the whole process
• Element-by-element tracking with radiation damping & quantum

excitation

[1] T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).



Depolarization effects: simulation vs. estimation
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Z-mode W-mode H-mode

In the acceleration to Z & W
• The spin resonances are generally weak
• Polarization is mostly maintained
• Estimations agree fairly well with simulations

In the acceleration to H
• The spin resonances become stronger at higher energies
• Severe depolarization occurs
• Mitigation methods to be explored

[1] T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).

This study supports injecting highly polarized beams into the
collider rings as a very attractive solution, for applications @ Z & W.
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Setup of CEPC collider ring imperfect lattice

◼ W/ alignment and field errors, w/o BPM errors 

◼ Closed orbit & optics correction in SAD & AT. 

◼ The vertical emittance is adjusted to the design value

– w/o solenoid fields

– Quadrupoles in straight sections are artificially rotated

– Skew quads inserted next to Q1 & Q2
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rms closed orbit are 37μm/28μm 

rms β-beat are 0.36% and 3.4% 



Radiative depolarization in electron storage rings
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[1] R. Assmann, et al., AIP Conference Proceeding, 570, 169 (2001).

Electron polarization measurements in different machines [1]• 𝑃DK ≈
𝑃∞

1+𝜏𝐵𝐾𝑆/𝜏dep
,

1

𝜏𝐷𝐾
=

1

𝜏𝐵𝐾𝑆
+

1

𝜏dep
, radiative depolarization

characterized by 𝜏𝐵𝐾𝑆/𝜏dep

• More difficult to achieve a high polarization at higher energies



Radiative depolarization in electron storage rings
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[1] R. Assmann, et al., AIP Conference Proceeding, 570, 169 (2001).

Electron polarization measurements in different machines [1]• 𝑃DK ≈
𝑃∞

1+𝜏𝐵𝐾𝑆/𝜏dep
,

1

𝜏𝐷𝐾
=

1

𝜏𝐵𝐾𝑆
+

1

𝜏dep
, radiative depolarization

characterized by 𝜏𝐵𝐾𝑆/𝜏dep

• More difficult to achieve a high polarization at higher energies

• Stronger first-order spin resonances 𝜐0 = 𝐾 = 𝑘 ± 𝜐𝑧

Z W Higgs

• Agree well with SLIM simulations, can be alleviated w/ harmonic spin matching  (Yi Wu’s talk) 



Radiative depolarization in electron storage rings
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• 𝑃DK ≈
𝑃∞

1+𝜏𝐵𝐾𝑆/𝜏dep
,

1

𝜏𝐷𝐾
=

1

𝜏𝐵𝐾𝑆
+

1

𝜏dep
, radiative depolarization

characterized by 𝜏𝐵𝐾𝑆/𝜏dep

• More difficult to achieve a high polarization at higher energies

• Stronger first-order spin resonances

• Enhanced higher-order synchrotron-sideband resonances

[1] R. Assmann, et al., AIP Conference Proceeding, 570, 169 (2001).

Electron polarization measurements in different machines [1]

νz

ν0𝜎𝛿

νz

ν0𝜎𝛿

• Size of safe region in ν0 shrinks
• What about even higher energies?



Radiative depolarization in ultra-high-energy storage rings

◼ Two distinct spin diffusion mechanisms were proposed in [1] in 1970s, regarding the regimes of spin resonance

crossing, in the combined effects of synchrotron oscillation and synchrotron radiation
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Regime Correlated regime (consistent with existing measurements) Uncorrelated regime (not yet confirmed by experiments)

Condition
𝜅 =

𝜐0
2𝜆𝑝

𝜐𝑧
3 ≪ 1 𝜅 =

𝜐0
2𝜆𝑝

𝜐𝑧
3 ≪ 1 is violated and

𝜐0𝜎𝛿

𝜐𝑧
≫ 1

Theory Non-resonant spin diffusion & perturbative treatment of
𝜕 ො𝑛

𝜕𝛿
Resonant spin diffusion

Depolarization effect Higher-order synchrotron sideband spin resonances No dependence on 𝜐𝑧, weaker depolarization

◼ Monte-Carlo simulations were compared with these theories in the energy range of CEPC [2]

– showing a gradual evolution from the correlated regime to the uncorrelated regime in parameter scan

Z Higgs

Case A: dependence on beam energy Case B: influence of harmonic RF cavity

optimal lengthening condition

𝜅 =
ν0
2𝜆𝑝

ν𝑧
3 → ∞

Scan harmonic RF voltage

[1] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)
[2] W. H. Xia, Z. Duan, D. P. Barber, Y. W. Wang, B. Wang, J. Gao, accepted by Phys. Rev. Accel. Beams.

This study suggests existing theories are incomplete, requiring further development



Uncorrelated regime of spin resonance crossing
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• Prediction of the theory of resonant spin diffusion [1]
• Assume the adjacent two integer resonances have the same 

strength 
• Influence of first-order betatron spin resonances are not 

included

120 180

Is it possible to have a few percent polarization at 
Higgs or even ttbar energies?
• In collaboration with Yi Wu on spin bumps for 

ultra-high energies.

120 180

[1] Derbenev, Kondrantenko and Skrinsky, Part. Accel. 9, 247 (1979)



◼ Spin resonance structure featured in highly periodic lattices

– Enable polarization maintenance in the booster

– Helpful to avoid super strong resonances in the collider ring for working beam energies

◼ Comparison between simulations with the theories of (radiative) depolarization at ultra-high 
energies.

◼ Better understanding of the strengths of integer spin resonances is needed

– Lattice error sensitivity (S. Liuzzo) in terms of spin resonance strength ?

– Influence of “systematic” alignment errors & consequent corrector patterns ?

– How well can harmonic spin matching work -> percent-level self-polarization at H & ttbar ?

◼ Collaboration on these aspects are welcome!

Summary

Optics tuning and correction for future collider workshop 24



Your comments and suggestions are highly appreciated!
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Cancellation at small K
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Intrinsic resonances: 𝜐0 = 𝐾 = 𝑘 ± 𝜐𝑦 Imperfection resonances: 𝜐0 = 𝐾


