Comparison of Harmonic Spin Matching Schemes using Orbit Bumps in the FCC-ee

Y. Wu¹, D. P. Barber², F. Carlier³, L. van Riesen-Haupt¹, E. Gianfelice-Wendt⁴, T. Pieloni¹

¹École Polytechnique Fédérale de Lausanne (EPFL)
 ²Deutsches Elektronen Synchrotron (DESY)
 ³ European Organization for Nuclear Research (CERN)
 ⁴ Fermilab

Energy calibration in FCC-ee

- FCC-ee will operate on 4 centre-of-mass energies
 - Z⁰ bosons (91 GeV), WW pairs (160 GeV), Higgs bosons (240 GeV) and top quark pairs (350-365 GeV)
- High-precision centre-of-mass energy calibration
 - basis for precise measurements of the standard model particle properties
 - make it possible for the new rare process detection
 - precise measurements in FCC-ee will contribute to the measurements in FCC-hh

The current precision targets for the energy calibration: 4 keV at Z mass and 100 keV at W mass

the most promising way to achieve this target: resonant depolarization

FCC collaboration, "FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2", in European Physical Journal: Special Topics, 228, pp. 261-623, 2019.

Objectives

Ensure a sufficient spin polarization level (at least 5-10%)

- Estimate the achievable polarization under various lattice conditions e.g. misalignments+field errors
- 2. Use special structure to improve polarization e.g. closed orbit bumps

Basic concepts of spin polarization

- $\hat{n}_0(s)$: one-turn periodic solution of the T-BMT equation on closed orbit
- Spins on the closed orbit precess around \hat{n}_0 for ν_0 turns in every revolution $\Rightarrow \nu_0$: closed orbit spin tune
- $\nu_0=a\gamma$ in the perfectly aligned flat ring without solenoids $\nu_0\approx a\gamma$ in misaligned lattice $|\nu_0-a\gamma|$ impacts the measurement precision
- ST effect + radiative depolarization ⇒ equilibrium polarization

Effective model for error seeds creation

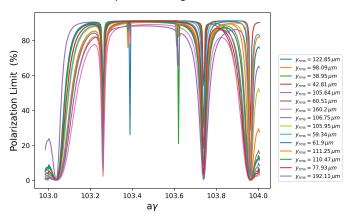
- Use an effective model to simulate residual orbits after lattice correction
- Random small errors generated from truncated Gaussian distributions (truncated at $2.5\,\sigma$)

Type	$\sigma_{\Delta X}$	$\sigma_{\Delta \mathrm{Y}}$	$\sigma_{\Delta m Z}$	$\sigma_{\Delta \mathrm{PSI}}$	$\sigma_{\Delta ext{THETA}}$	$\sigma_{\Delta m PHI}$
	(nm)	(nm)	(nm)	(μrad)	(μrad)	(μrad)
Arc quadrupole	120	120	120	2	2	2
Arc sextupole	120	120	120	2	2	2
Dipoles	120	120	120	2	0	0
IR quadrupole	120	120	120	2	2	2
IR sextupole	120	120	120	2	2	2

Energy scan with multiple error seeds

Setting 1

 $\sigma=120\,\mathrm{nm}$ for x,y,z misalignments $\sigma=2\,\mu\mathrm{rad}$ for angular deviations

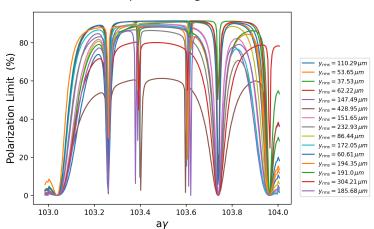


First order energy scan showing equilibrium polarization levels near Z energy

Energy scan with multiple error seeds

Setting 2

 $\sigma = 200\,\mathrm{nm}$ for x,y,z misalignments $\sigma = 2\,\mu\mathrm{rad}$ for angular deviations

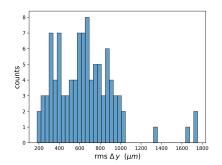


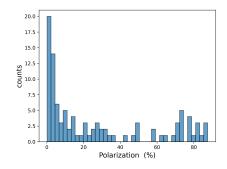
100 error seeds at Z energy

quadrupoles+dipoles:

 $\sigma=1\,\mu\mathrm{m}$ x,y,z misalignments

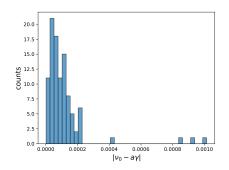
 $\sigma=1\,\mu\mathrm{rad}$ angular deviations

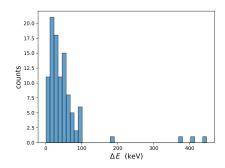




100 error seeds at Z energy

quadrupoles+dipoles: $\sigma=1\,\mu\mathrm{m} \text{ x,y,z misalignments} \\ \sigma=1\,\mu\mathrm{rad angular deviations}$





More realistically

Larger error seeds (100 $\mu \rm m) + \rm orbit$ correction (correctors and BPMs) How much polarization?

Ongoing!

Harmonic spin matching (HSM)

Conventional lattice correction + harmonic spin matching

- Misaligned ring $\rightarrow \hat{n}_0(s)$ not vertical \rightarrow stronger spin diffusion
- Random vertical quadrupole misalignments are difficult to control
- HSM: use multiple vertical orbit correctors to create an additional controllable \hat{n}_0 tilt and reduce $(\delta \hat{n}_0)_{\rm rms} \to$ elevate polarization
- Use closed vertical bumps to avoid disturbing the orbits outside bumps

Harmonic bump composition

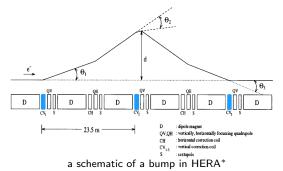
1st corrector: give a vertical kick

2nd corrector: kick y back to initial value at the 3rd corrector

3rd corrector: kick y' back to initial value

Kicks of 2nd and 3rd correctors are adjusted to make the bump **CLOSED**

one independent variable for each bump



^{*}D. P. Barber, et al. "High spin polarization at the HERA electron storage ring." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 338.2-3 (1994): 166-184.

Three correction schemes

1. HERA formalism (used in HERA)

D. P. Barber, et al. A general harmonic spin matching formalism for the suppression of depolarisation caused by closed orbit distortion in electron storage rings. No. DESY-85-044. DESY. 1985.

2. Rossmanith-Schmidt scheme (used in PETRA)

R. Rossmanith and R. Schmidt, Compensation of depolarizing effects in electron-positron storage rings. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 236.2 (1985): 231-248.

3. LEP method (Deterministic) (used in LEP)

R. W. Assmann, Optimierung der transversalen Spin-Polarisation im LEP-Speicherring und Anwendung für Präzisionsmessungen am Z-Boson. Diss. Munich U., 1994.

HERA formalism

$$\delta \hat{n}_0 = \alpha \hat{m} + \beta \hat{l}$$

 $\hat{l}(s), \hat{n}_0(s), \hat{m}(s)$ are periodic spin axes that form a right-hand coordinate system. Expand α and β to Fourier series

$$(\alpha - i\beta)(s) = -i\frac{C}{2\pi} \sum_{k} \frac{f_k}{k - \tilde{\nu}} e^{i2\pi ks/C}$$

 f_k : Fourier coefficients, related to the closed orbit and perturbing fields

Make additional orbit corrections using orbit bumps to reduce the rms tilt by minimizing the Fourier coefficients

Simplified HERA formalism

- Extract n_0 direction at the end of all elements
- Expand $n_{0x}(s) + in_{0z}(s)$ into Fourier series
- Minimize target coefficients using four bumps

$$n_{0x} + in_{0z} \approx \sum_{k=-N}^{N} c_k \cdot e^{i2\pi ks/C}$$

$$c_k = \frac{1}{C} \int (n_{0x} + in_{0z}) \cdot e^{-i2\pi ks/C} ds \approx \frac{\sum_{j=1}^{M} [n_{0x}(s_j) + in_{0z}(s_j)] \cdot e^{-i2\pi ks_j/C}}{M}$$

Response matrix

Each closed bump can be represented using a single variable, and each bump has an independent and linear contribution to the Fourier coefficients

$$MK = C$$

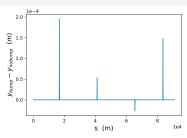
K: amplitudes (the first kick value) of the bumps

C: real and imaginary parts of the required harmonics coefficients $[c_{0\text{real}}, c_{0\text{imag}}, c_{1\text{real}}, c_{1\text{imag}}]$

If the harmonics 0 and 1 of a misaligned lattice is $\bf A$, the bumps should generate $-\bf A$, and bump amplitudes can be estimated via inversing matrix

$$\mathsf{K} = \mathsf{M}^{-1}(-\mathsf{A})$$

Changes after adding bumps



- How does orbit change?
 - Orbits outside of the bumps are unaffected.
 - max $0.2\,\mathrm{mm}~\Delta y$ within bumps is at the level of rms orbit of the effective lattice
- How does vertical dispersion change?
 - $\bullet~(\eta_y)_{\rm rms}$ 7.602 mm \rightarrow 7.675 mm, 0.96% increase
 - $[\Delta \eta_y(s)]_{\rm rms} = 0.4 \, {\rm mm}$
- How does vertical emittance change?
 - ε_{y} 0.703 pm ightarrow 0.719 pm, 2.16% increase
- How does ν_0 shift?
 - ullet $a\gamma = 103.983116$, $u_0 = 103.983100158
 ightarrow 103.983100156$, insignificant

HERA formalism

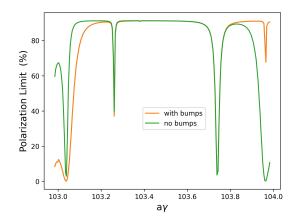
At 45.82 GeV ($a\gamma = 103.983$)

	$(\delta \textit{n}_0)_{\mathrm{rms}}$ (mrad)	Polarization (%)	
no correction	2.28	10.68	
a set of four random bumps	0.912	90.58	
optimized four bumps	0.9	90.96	
a set of eight random bumps	0.903	90.79	

Not necessary to use optimized locations, but better to have a symmetric layout

HERA formalism

Using 4 bumps which are optimized at 45.82 GeV ($a\gamma=103.983$)



Rossmanith-Schmidt scheme

Assume that spin precessions around vertical direction only happen in bending magnets, and the radial perturbing fields on the closed orbit only exist between bending magnets

$$|\delta \vec{n}_0(s)| = \frac{1/c^2}{2(1-\cos 2\pi \nu)} \left[\left(\int\limits_s^{s+L} \delta \Omega_x \cos \phi \mathrm{d}s \right)^2 + \left(\int\limits_s^{s+L} \delta \Omega_x \sin \phi \mathrm{d}s \right)^2 \right]$$

$$\delta \Omega_x = \frac{e}{m_0 c \gamma} \left(1 + a \gamma \right) B_x \text{ and } \phi = \gamma a \alpha$$

$$\mathrm{also} \ \frac{e}{m_0 c \gamma} \int\limits_{s_{2i}}^{s_{2i+1}} B_x(s) \mathrm{d}s = -\Delta y_i'$$

$$|\delta \vec{n}_0| = \frac{1/c^2}{2(1-\cos 2\pi \nu)} (1+\gamma a) \left[\left(\sum_{i=1}^N \sin(\gamma a \alpha_i) \Delta y_i' \right)^2 + \left(\sum_{i=1}^N \cos(\gamma a \alpha_i) \Delta y_i' \right)^2 \right]$$

$$\delta \vec{n}_0 = \frac{1/c^2}{2(1-\cos 2\pi \nu)} \left(1 + \gamma a \right) \left[\left(\sum_{i=1}^N \sin(\gamma a \alpha_i) \Delta y_i' \right)^2 + \left(\sum_{i=1}^N \cos(\gamma a \alpha_i) \Delta y_i' \right)^2 \right]$$

die Z-Achse

die Z-Achse

Rossmanith-Schmidt scheme

Expand $\Delta y'(\alpha)$ into Fourier series

$$\Delta y'(\alpha) = \sum_{k=1}^{\infty} (a_k \cos k\alpha + b_k \sin k\alpha)$$

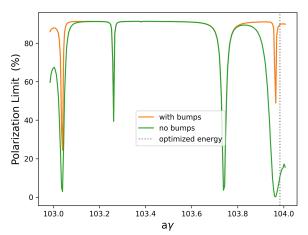
$$\frac{a_{k}}{b_{k}} = \frac{1}{N} \sum \Delta y_{i}'(\alpha_{i}) \frac{\cos k\alpha_{i}}{\sin k\alpha_{i}}$$

The harmonics which are adjacent to $a\gamma$ contribute most to the sum. FCC-ee (Z) operates between $a\gamma$ 103 and 104, so that a/b_{103} and a/b_{104} are to be suppressed using four closed bumps.

Rossmanith-Schmidt scheme

45.82 GeV (
$$a\gamma = 103.983$$
)

 $\delta \textit{n}_0: 2.28\,\mathrm{mrad} \Rightarrow 0.90\,\mathrm{mrad}$, $\textit{P}_{DK}: 10.68\% \Rightarrow 89.65\%$



Modified Rossmanith-Schmidt scheme

$$\int B_{x}(s)\mathrm{d}s \propto -\Delta y^{'} \approx \sum_{i=1}^{N_{\mathrm{quad}}} k_{1i}y_{i}L_{i} + \sum_{j=1}^{N_{\mathrm{Vkicker}}} \mathrm{kick}_{j}$$

- Use $y_{\rm eff}$ to avoid the errors from thin lens approximation $y_{\rm eff} \approx \frac{1-\cos\sqrt{k}L}{\sqrt{k}L\sin\sqrt{k}L}(y_1+y_2)$ (k<0) or $y_{\rm eff} \approx \frac{\cosh\sqrt{k}L-1}{\sqrt{k}L\sinh\sqrt{k}L}(y_1+y_2)$ (k>0)
- If two BPMs are installed at both ends of each quadrupole Polarization $10.68\% \rightarrow 84.71\%$
- ullet 3056 dipoles, 1856 quadrupoles o fewer BPMs required

LEP method

Assume radial fields in quadrupoles and proportional to the beam position. Analyze unweighted vertical BPM readings and minimize critical harmonics

$$a_{k} = \frac{1}{\pi} \sum_{i=1}^{N_{BPM}} y_{i} \cdot \Delta \theta_{i} \cdot \cos(k \cdot \theta_{i})$$

$$1 \sum_{k=1}^{N_{BPM}} \Delta \theta_{i} \cdot (k \cdot \theta_{i})$$

 $b_k = \frac{1}{\pi} \sum_{i=1}^{N_{BPM}} y_i \cdot \Delta \theta_i \cdot \sin(k \cdot \theta_i)$

If there is a BPM next to each quadrupole and functions properly

45.82 GeV (
$$a\gamma = 103.983$$
)

 $\delta n_0: 2.28 \,\mathrm{mrad} \Rightarrow 2.03 \,\mathrm{mrad}$, $P_{DK}: 10.68\% \Rightarrow 13.72\%$

Comparison

At 45.82 GeV ($a\gamma = 103.983$)

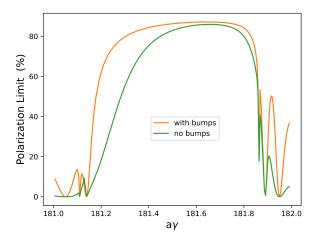
Method	$(\delta n_0)_{rms}$ (mrad)	Polarization (%)	
no correction	2.28	10.68	
HERA formalism	0.90	90.96	
Rossmanith-Schmidt scheme	0.90	89.65	
Modified R-S scheme	1.01	84.71	
LEP method	2.03	13.72	

Many questions remained regarding all three schemes

W energy using R-S scheme

80.192 GeV ($a\gamma = 181.986$), (Δy) $_{
m rms} = 117.44~\mu{
m m}$

 $\delta n_0:5.87\,\mathrm{mrad}\Rightarrow2.88\,\mathrm{mrad}$, $P_{DK}:4.69\%\Rightarrow34.65\%$



Pros and cons

1. HERA formalism

- Pro: systematic and rigorous mathematical derivation
- Con: empirically setting the bumps will be inevitable

2. Rossmanith-Schmidt scheme

- Pro: based on the acquisition of a more measurable quantity
- ullet Con: BPMs at both ends of each dipole/quadrupole o extra cost
- Con: restricted by BPM misalignments and calibration errors

3. LEP method

- Pro: based on the real observables
- Con: restricted by BPM misalignments and calibration errors

Outlooks

- Model the lattice using multiple larger error seeds, and estimate the maximum acceptable orbits that guarantee a sufficient polarization
- Complete the harmonic spin matching schemes
 - solve the remaining questions regarding the three schemes
 - find an effective method that relies on the analysis of real observables
 - test its effectiveness under different lattice conditions
- \bullet Possible polarization at Higgs and $t\bar{t}$ energies in FCC-ee (1% at H in CEPC simulation)

Thank you!

Remained problems of HSM

- What's the harmonics that should be corrected in the simplified HERA formalism
- ullet Whether there is a way to extract $\Delta y'$ information from vertical BPM readings in quadrupoles
- How to make LEP method work
- If it's possible to correct vertical resonance (not HSM)
- What will happen if the errors are much larger
- What will happen near other integers besides 103 and 104

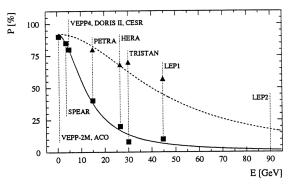
	$ au_{ST}$	$ au_{BKS}$	$ au_{dep}$	
FCC-ee	11 779 min	11 773 min	$4.26 \times 10^6 \mathrm{min}$	90 min for 10%
$(\Delta y)_{\mathrm{rms}} = 72 \mu\mathrm{m}$	1177911111	11775111111	4.20 × 10 IIIII	with wigglers (CDR)
HERA (26.7 GeV)	$\sim 43\mathrm{min}$	$\sim 40\mathrm{min}$	$\sim 10\mathrm{min}$	$ au_{dk} \sim 8 \mathrm{min}$
LEP	$\sim 310\mathrm{min}$		$\sim 24\mathrm{min}$	30 min for 10%
	46 GeV		46.5 GeV	no wigglers

in LEP
$$(\Delta y)_{
m rms}=530\,\mu{
m m}$$
, $(\eta_y)_{
m rms}=13\,{
m cm}$

$$P(t) = P_{dk} \left[1 - e^{-t/\tau_{dk}} \right] + P_0 e^{-t/\tau_{dk}} \simeq P_0 e^{-t/\tau_{dep}}$$

Systematic errors of the average beam energy determination

- Energy dependent momentum compaction
- Vertical orbit distortions (radial fields)
- Longitudinal fields



Maximum measured polarization in different storage rings with HSM (triangles) and without HSM (squares)

Possible problems with LEP method

- radial fields not only exist in quads
- the radial field seen by the particle is not fully proportional to the y position
- even if it's proportional, each quad has different strength (ky)
- how much spin rotates is an integration of radial field within the element (kyL)

Computing the response matrix

- Search for all possible locations in a perfectly aligned lattice
- Add one bump in one possible location
- Adjust 2nd and 3rd kicks to make y and yp be all 0 outside the bump
- Analyze its contribution to the target harmonics
- Change the bump position and redo the analysis
- Select four bumps that build a matrix with the largest determinant
- Add four bumps into a misaligned machine with estimated bump amplitudes, and match the orbits to make bumps closed