ML APPLICATIONS AT THE ADVANCED PHOTON SOURCE

NIKITA KUKLEV (ADVANCED PHOTON SOURCE, ANL, USA) LOUIS EMERY HAIRONG SHANG MICHAEL BORLAND YINE SUN

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. **Optics Tuning and Corrections for Future colliders workshop** June 26, 2023

APS UPGRADE

APS is undergoing a major upgrade (APS-U)

- New storage ring
- Refurbishment of injector complex
- More beamlines

Extremely compressed timeline

- <3 months for 24x7 beam commissioning

New opportunities and new problems

- More challenging physics
- New diagnostics and increased data rates

See talk by V. Sajaev for details of commissioning

ML @ APS

Several efforts underway aimed at APS-U commissioning and operations

ML @ APS - OPTIMIZATION

Large part of commissioning process is spent iteratively tuning linear/nonlinear optics

Many talks at this workshop discuss details of such strategies

However, eventually might get stuck:

- Model does not match reality
- Unexpected physics
- etc.

(NON-PARAMETRIC) ACCELERATOR OPTIMIZATION

Solution – switch to non-parametric methods and start tweaking inputs. Many methods:

WHAT IS MO OPTIMIZATION USED FOR?

Light sources designs are optimized heavily:

- Dynamic acceptance (DA)
- Lifetime (momentum aperture, MA)
- Detuning, off-momentum DA, CS, etc.

Online use demonstrated previously with:

- MOGA
- MOPSO
- MGGPO

Significantly harder than single objective, required **lots** of beam time

How to improve?

- 1. https://en.wikipedia.org/wiki/Pareto_front#/media/File:Front_pareto.svg
- 2. M. Borland et al., HEP GARD Accelerator and Beam Physics: Workshop #2, WG 4 (2020)
- 3. M. Borland et al., J. Synchrotron Rad. 21 (2014).
- 4. Y. Sun, NAPAC2016 (WEPOB15)
- 5. Y. Sun, NAPAC2016 (WEPOB12)

BAYESIAN OPTIMIZATION

MOBO INTERNALS

arXiv:2006.05078 arXiv:2105.08195

- Fit Gaussian process model as usual, for each objective separately
- Acquisition function seek to maximize hypervolume relative to reference point

- Recent progress in ML frameworks has made this computation tractable for online optimization in high dimensional spaces (~seconds)
- (ask me for details)

MOBO DEVELOPMENT @ APS

Want a sample-efficient method for online nonlinear optics optimization

Sample-efficiency has two parts:

- Time per sample
- 'Intelligence' of picking good candidates

Decided to focus on DA/MA since a very well studied set of objectives

PREVIOUS DA/MA MEASUREMENT IN APS

- APS does not have single-bunch kickers (APS-U will)
- Previous efforts measured DA and MA separately
 - DA = fill+kick scan (slow) or injection efficiency (with detuned kickers to put beam on DA edge, less robust)

MA = lifetime of coasting beam

L. Emery, PRAB 24 (2021)

SPEEDING UP MEASUREMENTS

- Developed new combined procedure based on special bunch pattern
 - Injection efficiency with partial kicker strength, then kick out to clear gap
 - Lifetime measured in coasting bunches that are not lost during injection
 - Similar procedure will be used in APS-U, so was good exercise

MEASUREMENT PRECISION

- Both lifetime and injection efficiency measurements depend on DCCT and/or BCM
 - +-10uA DCCT
 - +-100uA BCM per bucket, but sum all buckets
- Need to normalize (I^{2/3} = I¹ from Touschek x I^{-1/3} from potential well distortion)
- Bootstrapping analysis used to provide lifetime fit parameter distribution
 - Demonstrates that 30s collection is sufficient for +-0.05hr

EXPERIMENTAL KNOBS

- Instead of using sextupoles directly, work in chroma null space of a 2-cell supersector
- 7D 2 = 5D
- Prevents algorithm from causing instabilities

RESULTS – 5D

- Compare with MGGPO results over 3x efficiency improvement
 - (note: used different lattices, objective values not fully comparable)

RESULTS – 5D

Spoiled initial conditions, performance was quickly reattained

Note start != 0, reference point below initial value

RESULTS – 7D

- Tried on raw sextupoles performance continued to be very good
- Only small chromaticity changes, had to carefully define limits

GETTING MORE KNOBS

- To get more sextupole knobs, continues to break symmetry with larger supercells
- 14D -> get 12D null space

FINAL DAY OF APS RESULTS

- We followed up on the last shift before APS shutdown to test 5D and 12D on same lattice
 - Should converge to same performance
 - Observations agree, and 12D is a bit slower as expected

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

APS-U SIMULATIONS

- MOBO was implemented into APS-U lattice tuning simulation
- Sextupoles only = 12D

Sextupoles + quad K1 + MB K1 = up to 24D (WIP)

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

APS-U SIMULATIONS

Several strategies implemented to improve performance (ask for details)

Dynamic reference point

- Move ref point closer to corner of pareto front as simulation progresses (use population quantiles)
- Removes the extreme candidates from consideration, focuses on more relevant region

Surrogate model prior mean

- Instead of fitting only on data, provide prior mean based on simulation-trained surrogate model
- Encodes 'prior' knowledge

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x'}))$$

ML @ APS - MEASUREMENT

Switching topics, now have:

- Have model, don't know parameters
- Want to estimate parameters from data

This case encompasses many standard tasks:

- LOCO and related analyses (i.e. get tilt of magnet, get optics functions)
- Phase space reconstruction (i.e. determine (x,px) at location based on BPM readings, get sigma matrix)

Several applications in APSU can benefit from more efficient parameter 'inference':

- Lattice correction / detection of construction errors
- BTS transfer line measurement

V. Sajaev, IPAC2015, 556. R. Lindberg, FLS 2018 APS-U FDR (2019)

ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

roonne National Laboratory is a

BAYESIAN PARAMETER INFERENCE

Idea – adopt a Bayesian approach to infer parameter posterior distributions

Commonly used in other fields (cosmology, HEP)

Fast variants enabled by recent advances:

- Automatic differentiation frameworks for ML (TensorFlow, PyTorch, Jax)
- Probabilistic programming languages (Jax, Pyro)
- New Hamiltonian Monte Carlo samplers (i.e. No U-Turn Sampler)

Together, allow for significantly more efficient estimation of posterior distributions

BAYESIAN BEAM OPTICS

LS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Step 1 – differentiable beam dynamics model

for example, response matrix!

Differentiable = get <observable> + ∂<observable>/∂<parameter>

Need to convert all standard operations (matrix multiply, symplectic integrators, ...) to use special functions provided by auto-diff libraries

BAYESIAN BEAM OPTICS EXAMPLE

Can use gradient information for fast optics matching. Example: find min beta phase advance in FODO cell

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BAYESIAN PARAMETER INFERENCE

Step 2 - set up efficient posterior estimation

Disclaimer: not an expert on specific implementations!

Bayes' rule tells us how to use it to perform **inference**, or draw conclusions about latent variables from data, by computing the **posterior distribution**

BAYESIAN PARAMETER INFERENCE

Two main methods:

Variational inference

"a family of techniques for approximating intractable integrals"

Key idea: use a more tractable set of distributions (**variational distributions**) and make them as similar as possible to the desired one

Faster, inherently biased, no convergence guarantees

Markov Chain Monte Carlo

Think of it as jumping around in parameter space with probability of taking a step weighted by the likelihood

With differentiable model, can use an advanced MCMC algorithm – Hamiltonian Monte Carlo (HMC)

Slower, but asymptotically exact

1. arXiv:1206.7051

- 2. pyro.ai/examples/intro_long.html
- 3. https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings _algorithm#/media/File:Flowchart-of-Metropolis-Hastings-M-Halgorithm-for-the-parameter-estimation-using-the.png

SIMPLE INFERENCE PROBLEM

Goal: determine quadrupole strength k1 from final beam position data

- Model has only 1 latent variable k1
- Broad uniform prior (i.e. "its somewhere here")
- Get correct result!

2 QUADS FROM APS LINAC

Simulation results: [2 quads + 2 correctors]

- HMC shows expected correlation between parameters
- Simple SVI shows no correlation, needed to use a more complex 'distribution space' (multivariate normals)

APS LINAC SIMULATIONS

Simulation results: [1 quads +1 sextupole + 2 correctors]

- Sextupole is a nonlinear element, shifted on purpose
- Fitting nonlinear components can be done in LOCO with feed-downs, but we can infer directly from integrator tracking model
- HMC works very well (SVI had slight systematic bias)
- Note that sextupole has correlations with quad, consistent with feed-down

⋧

Ę

APS LINAC SIMULATIONS

There is no free lunch

Still need enough data at good locations

Example:

Add sextupole tilt parameter, get some divergence in fits

INFERENCE SCALING

- Further increasing problem size slows inference but HMC can be parallelized well
- Obtaining good estimates requires better priors (i.e. K1 +- 5%, not full range of magnet)

Is LOCO-scale possible?

HMC: ~1k parameters reported, slow

SVI: 100k+ reported

Bonus: can speed up measurement by changing many correctors at a time ('fast ORM'). Optimal patterns TBD.

What else can be analyzed?

Beam properties (i.e. sigma matrix), anything with a model

Current focus on performance, and applying to APS BTS transfer line with few dozen params

CONCLUSIONS

Accelerator tuning is a well-studied process, but there are places where **ML can help**

Multi-objective optimization:

No good model, want to tune outputs

- Implemented MOBO algorithm for online tuning
- Obtained faster convergence in APS than previous experimental tests
- Demonstrated feasibility for online applications in full 24D APS-U lattice

Parameter inference:

Have (complicated) model, want to fit parameters based on data

- ML frameworks provide auto-diff capabilities, can make differentiable models
- By using HMC/SVI, get fast Bayesian parameter inference
- Proof of concept for estimating magnet properties can use for elements not tractable with standard tools

THANK YOU!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BONUS – BCM RAW DATA

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BONUS – RAW SEXTUPOLE INPUTS WITH LARGE RANGE CAUSE MOBO TO CHEAT

MOBO quickly learned to **cheat lifetime by inducing instabilities** Bug discovered in knob multiplication (null space factors did not apply, so knobs were currents)

BAD MODEL

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

UNDERCONSTRAINED MODEL

