

FCC-ee Collider Magnet Field Correction

J. Bauche¹, C. Eriksson¹, F. Saeidi² ¹ CERN, Geneva ² IPM, Tehran

FCC Optics Tuning and Corrections Workshop 2023, 26-28th June 2023.

Many thanks to all the members of the FCC collaboration.

Outline

FCC

Magnet specifications

Field quality with trim circuits

- Dipole
- Quadrupole
- Sextupole

Conclusions

3

Specifications

 Includes aperture reduction in SSS magnets

FCC

- Aperture in sextupole assumes no bake-out system (as in CDR baseline)
- Aperture in dipole could possibly be reduced with vacuum chamber tapering's
- Sextupoles are present in only about 1/2 of the arc halfcells
- Field quality specifications
 from latest beam dynamic
 studies

	Mag. Length	Bore aperture	Vacuum aperture	Pole tip field	Number of units (arcs)	Total magnetic length	Ring filling factor (91 km)
		(reduced)	(reduced)				
	[m]	[mm]	[mm]	[T]		[km]	[%]
Dipole (S)	19.30				1128	21.77	
Dipole (M)	20.95	42	35	0.061	284	5.95	
Dipole (L)	22.65				1428	32.35	
Total					2840	60.08	65.9
Quadrupole	2.9	37	30	0.438	2836	8.22	9.0
Sextupole	1.5	33	30	0.442	4672	7.01	7.7

Arc magnet specifications from optics - May 2023 (K. Oide)

Error & maget type	Z	tt
b ₃ in arc dipoles	2	2
b ₃ in IR dipoles	0.1	0.5
b ₃ in arc quadrupoles	10	8
b ₃ in QY	0.1	8
b ₃ in QC, QT, QA, QB, QG, QH, QL, QR, QU, QI	1	8
a3 in QC1, QC2	1	5
b_4 in arc quadrupoles	10	10
b_4 in QC, QY b_4 in QT, QA, QB,	0.01-0.1	0.1
QG, QH, QL, QR, QU, QI	1	1
b_6 in arc quadrupoles	5	5
b_6 in IR quadrupoles	0.01	1

Magnet field quality specifications from optics – March 2023 (E. Ahmadi, R. Tomas)

Field tapering and correction circuits

Baseline

FCC

- Field tapering trims on each aperture of dipoles and quadrupoles
 → granularity: every 4 FODO
- Orbit correction and skew quadrupoles: trim coils in sextupoles
 - \rightarrow granularity: at every sextupole, so <u>only at ~1/2</u> of the arc half-cells
- → We studied options to remove orbit correction from sextupoles
 - → Improve granularity of correction
 - → Free space in the sextupole to decrease its power consumption (current density)

Alternatives

- 1) H + V orbit corrections use quadrupole tapering trim coils
 - \rightarrow granularity: at every arc half-cell
- 2) H orbit correction uses dipole tapering trim coils +

V orbit correction uses quadrupole tapering trim coils

 \rightarrow granularity: at every arc half-cell

	Location	Mag.	Peak field (B)	Integrated
BASELINE		Length	or gradient (Q)	strength
		[m]	[T] or [T/m]	[Tm] or [T]
Orbit correction H	Sextupole	1.5	0.013	0.02
Orbit correction V	Sextupole	1.5	0.013	0.02
Skew quadrupole	Sextupole	1.5	0.4	0.6

Correction specifications from optics – April 2023 (K. Oide)

ALTERNATIVE 1	Location	Mag. Length [m]	Peak field (B) or gradient (Q) [T] or [T/m]	Integrated strength [Tm] or [T]
Orbit correction H	Quadrupole	2.9	0.0067	0.02
Orbit correction V	Quadrupole	2.9	0.0067	0.02
Skew quadrupole	Sextupole	1.5	0.4	0.6

ALTERNATIVE 2	Location	Mag. Length [m]	Peak field (B) or gradient (Q)	Integrated strength [Tm] or [T]
Orbit correction H	Dipole	21.15	0.0009	0.02
Orbit correction V	Quadrupole	2.9	0.0067	0.02
Skew quadrupole	Sextupole	1.5	0.4	0.6

6

Dipole

Dipole design

Trim coils

FCC

- Allow to modulate the field in the apertures independently
- Used for field tapering up to ±2.5 % (tt_{bar})
- Used for field tuning up to ±1 % (all phases)
 → Granularity depends on number of circuits
- If field tuning granularity matches orbit correction one, can be used for H orbit correction (up to ±1.5 %)
- → Worst case: could be up to 5% of main field variation

Magnetic model cross-section (tt_{bar} excitation, B = 61 mT)

Trim coils wrapped around top and bottom poles

Dipole field quality

Case 1: peak current, trim coils off (182.5 GeV)

- ±1 unit range extends beyond R_{ref}, allows margin for manufacturing tolerances
- b2 decreased to 0.5 unit (w.r.t. 3 units in CDR design)

Computed field harmonics

Aperture 84 mm

Aperture 74 mm

Dipole field quality

<u>Case 2</u>: peak current, trim coils on (182.5 GeV)

- Trim coils activated to tune B_{peak} by +5% in one aperture and -5% in the other ٠
- Marginal effect from trims on field quality ۲

Aperture 84 mm

Aperture 74 mm

Dipole field quality

Case 3: 1/4 current, trim coils off (45.6 GeV)

- Slight increase of b₂ at lower field
- Can be compensated with arc quadrupoles
- Will be further evaluated with prototype magnet

Computed field harmonics

Aperture 84 mm

Aperture 74 mm

11

Dipole summary

FCC

 The magnet geometry has been optimized to further limit b₂ to <1.5 units and other harmonics to <0.5 units

• The **effect of the trim** coils for the field tapering, tuning and H orbit correction on the **field quality** is **negligible**

Computed field harmonics

12

Quadrupole

Background – latest collider quad design

- Trim coils at poles, no magnetic gap between apertures.
- Magnetic axis shift much less compared to previous designs (~0.40 mm); worst case b1 is ~10 units, gives ~0.01 mm shift.

Harmonics at reference radius 10 mm, for different powering cases. Presented at FCC week 2023: "Status of the FCC-ee booster and collider magnet developments", 7th June 2023.

Current collider quad cross section design. Note the trim coils at the poles of each aperture.

Background – latest collider quad design

- Trim coils at poles, no magnetic gap between apertures.
- Magnetic axis shift much less compared to previous designs (~0.40 mm); worst case b1 is ~10 units, gives ~0.01 mm shift.

Harmonics at reference radius 10 mm, for different powering cases. Presented at FCC week 2023: "Status of the FCC-ee booster and collider magnet developments", 7th June 2023.

Current collider quad cross section design. Note the trim coils at the poles of each aperture.

Horizontal & vertical correction

- Previous designs assumed trim coils only used for quadrupolar tapering and tuning.
- Current set-up, with trim coils on poles, could allow for vertical and horizontal correction.
 - Maximum field strength required for correction: $L_{sext}B_{corr, sext} = L_{quad}B_{corr, quad}$

$$\Rightarrow B_{corr, quad} = \frac{1.5 \text{ m}}{2.9 \text{ m}} 13 \text{ mT} = 6.7 \text{ mT}$$

Powering setup for horizontal correction (vertical dipole).

Powering setup for vertical correction (horizontal dipole).

FCC Optics Tuning and Corrections workshop 2023

Horizontal correction (quad main coil off): field quality

• Field quality dB/B \approx 6%.

FCC

• Large sextupole component introduced:

Rref = 10 mm	Main harmonic: B1
b1	10000.000
b2	-9.499
b3	578.806
b4	-0.005
b5	5.581
b6	0.000
b7	-0.292
b8	-0.001
b9	-0.006
b10	0.000

Harmonics of the horizontal correction dipole (vertical field).

Vertical correction (quad main coil off): field quality

- Same as for horizontal corr., due to pole symmetry, but components are skew.
- Field quality dB/B \approx 6%.
- Large (skew!) sextupole component introduced:

Rref = 10 mm	Main harmonic: A1
a1	10000.000
a2	0.265
a3	-577.456
a4	0.032
a5	5.659
a6	0.002
a7	0.295
a8	0.000
a9	-0.006
a10	0.000

Harmonics of the vertical correction dipole (horizontal field).

Field quality w.r.t. main quad field (main coils on)

- Sextupole component introduced by horizontal or vertical correction is not small with respect to the main quad field.
- The question is: is it acceptable?

FCC

Rref = 10 mm	Main harm: B2	Rref = 10 mm	Main harm: B2	
b1	554.930	a1	0.000	
b2	10000.000	a2	0.000	
b3	31.367	a3	0.000	
b4	0.001	a4	0.000	
b5	0.345	a5	0.000	
b6	0.271	a6	0.000	
b7	-0.018	a7	0.000	
b8	-0.005	a8	0.000	
b9	0.000	a9	0.000	
b10	-0.003	a10	0.000	
Harmoni	ics of qua	drupole fi	eld with	
max horizontal correction.				

Rref = 10	Main harm: B2	Rref = 10	Main harm: B2
b1	-4.357	a1	554.098
b2	10000.000	a2	0.020
b3	-1.004	a3	-31.996
b4	0.000	a4	0.002
b5	0.033	a5	0.313
b6	0.271	a6	0.000
b7	-0.002	a7	0.016
b8	-0.005	a8	0.000
b9	0.000	a9	0.000
ь10 Harmoni	-0.003 cs of qua	^{a10} drupole fi	0.000 eld with

max vertical correction.

Powering requirements

Horizontal correction:

FCC

- Large cross-talk; opposing aperture must apply an opposing correcting field to compensate.
 - Worst case is when B1 = +6.7 mT is required on both apertures; each trim coil needs NI = 477 A to compensate cross-talk.

Vertical correction:

 Minimal cross-talk; NI = 177 A per trim coil to achieve max corr. field.

Plot showing potential field lines with only right aperture horizontal correction powered, and no compensation on the left aperture trim coils. Flux leaks into the left aperture.

Circuit requirements

FCO

- If only quadrupolar tapering / tuning is needed, all trim coils in each aperture can be powered in series
 → 1 trim coil power supply per aperture.
- 2. If either vertical or horizontal correction is required, each pair of adjacent trim coils can be powered in series

 \rightarrow 2 trim coil power supplies coils <u>per aperture</u>.

 If both vertical and horizontal correction is required, each trim coil needs to be powered independently
 → 4 trim coil power supplies per aperture.

or

Conclusions for quadrupole

• Large sextupole component introduced in both horizontal and vertical correction.

 \rightarrow In the vertical correction case, this means a skew sextupole.

- Horizontal correction would require extra power to compensate for cross-talk in opposing aperture.
 - \rightarrow probably not a viable solution.

Sextupole

23

Main Sextupole

Parameter	Unit	Updated June 2023
Inter-beam distance	mm	350
Sextupole strength	T/m2	880
Aperture radius	mm	33
Magnetic length	m	1.5
Pole tip field	Т	0.48
Good field region	mm	±10
Field quality in GFR	-	1.0E-04

Total Voltage (V)

Total Power (W)

Auxiliary Coils as Correctors

12.1

87

14/7

118/59

20

315

Individual Correctors (main sextupole coils off)

25

- The Horizontal dipole corrector brings in a strong normal sextupole component that can be cured by the main sextupole coil.
- The Horizontal/Vertical dipole correctors bring strong normal/ skew decapole components.
- The Skew Quadrupole corrector introduces a strong skew octupole term. (<u>800 Units!</u> not allowed multipole but there is, since it is not a pure skew quadrupole magnet!

Field Quality Contribution of each corrector

✓ The main circuit and only one of the trim circuits are powered...

Field Quality Sextupole with all correctors ON

28

Conclusions for sextupole

- The Horizontal and Vertical dipole corrector brings strong decapole components.
 The Skew Quadrupole corrector introduces a strong skew octupole term.
- > Higher order multipoles (specially n=4, n=5) should be investigated to finalize the configuration of correctors in the lattice.
- ➤ In all cases these perturbations are more modest if a smaller region around the magnetic centre is considered (smaller GFR).

29

Conclusions

FCC Optics Tuning and Corrections workshop 2023

Conclusions

FCO

The **field quality** of the **orbit correction** and **skew quadrupole** circuits generated by trim coils in the **sextupoles** has been evaluated.

- Up to ~25 units of normal/skew decapoles are expected from orbit correction;
- Up to ~75 units of skew octupole are expected from the skew quadrupole.

Options have been explored to **host the orbit correction circuits in the dipoles and quadrupoles**, using the field tapering trim coils.

- This could make more room for the sextupole main coil and reduce its power consumption.
- It offers orbit correction granularity at every arc half-cell.
- The operation with a **fast feedback system** needs to be **verified** (solid iron yokes).

The **H** orbit correction could be made by the **dipole trim coils**, with no impact on the field quality.

The V orbit correction could be made by the **quadrupole trim coils**, though generating up to ~30 units of skew sextupole.

Thank you for your attention!

S FCC

Questions?

SPARE SLIDES

Comparing the Collider Sextupole Electrical and Cooling Parameters

Parameter	Unit	CDR	New (June 2023)
		(2019)	
Inter-beam distance	mm	300	350
Sextupole strength	T/m2	807	880
Aperture radius	mm	38	33
Magnetic length	m	1.4	1.5
Pole tip field	Т	0.59	0.48
Total current	At	6300	4250
Number of turns per coil	-	14	14
Operation current	А	448	304
Conductor dimensions	mm ²	8×8	8.5×8.5
Cooling diameter	mm	3	4
Current density	A/mm ²	7.87	5.1
Voltage drop per magnet	V	34.3	23.4
Resistance per magnet	mΩ	76	79
Power per magnet	kW	15.4	7.3
Number of water circuits	-	18	6
Water temperature rise	°C	10.4	13.4
Cooling water speed	m/s	2.77	1.75
Pressure drop	bar	6	6
Reynolds no.	-	4160	3450
Conductor length/magnet	m	255	277
Conductor mass/magnet	kg	128	147
Trim coil dimensions	mm	-	3.75 × 1.6
Number of trim coils	-	-	48+24
Trim coil length/magnet	m	_	1327

Individual Correctors (main sextupole coils off)

³⁴ 3 4

Field quality of sextupole plus correctors

$$\mathbf{B} = \mathbf{B}_{\text{SEXT}} + \mathbf{B}_{\text{VD}} + \mathbf{B}_{\text{HD}} + \mathbf{B}_{\text{SQ}} .$$

Considering the sextupole and the vertical dipole corrector

$$B_{\text{SEXT}} = \frac{B_{3,\text{SEXT}}}{10000} \left[10000 \left(\frac{\zeta}{R} \right)^2 + b_{9,\text{SEXT}} \left(\frac{\zeta}{R} \right)^8 + b_{15,\text{SEXT}} \left(\frac{\zeta}{R} \right)^{14} + \dots \right],$$

$$B_{\text{VD}} = \frac{B_{1,\text{VD}}}{10000} \left[10000 + b_{3,\text{VD}} \left(\frac{\zeta}{R} \right)^2 + b_{5,\text{VD}} \left(\frac{\zeta}{R} \right)^4 + b_{7,\text{VD}} \left(\frac{\zeta}{R} \right)^6 + b_{9,\text{VD}} \left(\frac{\zeta}{R} \right)^8 + \dots \right],$$

Combining the two expressions and normalizing by the sextupole fundamental component yields:

$$\begin{split} B_{\text{SEXT}} + B_{\text{VD}} &= \frac{B_{3,\text{SEXT}}}{10000} \Bigg[10000 \Bigg(\frac{\zeta}{R}\Bigg)^2 + b_{9,\text{SEXT}} \Bigg(\frac{\zeta}{R}\Bigg)^8 + b_{15,\text{SEXT}} \Bigg(\frac{\zeta}{R}\Bigg)^{14} + \dots \\ &+ \frac{B_{1,\text{VD}}}{B_{3,\text{SEXT}}} 10000 + \frac{B_{1,\text{VD}}}{B_{3,\text{SEXT}}} b_{3,\text{VD}} \Bigg(\frac{\zeta}{R}\Bigg)^2 + \frac{B_{1,\text{VD}}}{B_{3,\text{SEXT}}} b_{5,\text{VD}} \Bigg(\frac{\zeta}{R}\Bigg)^4 + \frac{B_{1,\text{VD}}}{B_{3,\text{SEXT}}} b_{7,\text{VD}} \Bigg(\frac{\zeta}{R}\Bigg)^6 + \dots \Bigg] \end{split}$$

The contribution to the multipoles coming from the correctors is **directly proportional to the corrector strength** and **inversely proportional to the main sextupole field**,

$$b_{5} = \frac{B_{1,VD}}{B_{3,SEXT}} b_{5,VD} \quad , \quad b_{7} = \frac{B_{1,VD}}{B_{3,SEXT}} b_{7,VD} \quad , \quad b_{9} = b_{9,SEXT} + \frac{B_{1,VD}}{B_{3,SEXT}} b_{9,VD} \quad , \quad ...$$

From: A. Milanese

 $\zeta = (\mathbf{x} + \mathbf{i}\mathbf{y})$

Field quality (sextupole plus correctors)

$$By(x.y = 0) = \left(B_H + S\frac{x^2}{2}\right) + b_5 x^4 + b_7 x^6 + b_9 x^8 + \dots$$
$$Bx(x.y = 0) = \left(B_V + g_x x\right) + b_3 x^2 + b_5 x^4 + b_6 x^5 + b_7 x^6 + b_9 x^8 + b_{10} x^9 + \dots$$

