

Piezo resistive gauge irradiation test results

Nikolaos Chatzigeorgiou VSC seminar on the 13th of June 2023 https://indico.cern.ch/event/1242517/

Agenda

- About piezo resistive gauges
- Their use in the LHC
- HL-LHC requirements
- Irradiation test results:
 - External facility
 - Internal facility
- Conclusions
- Future work

Piezo resistive gauges

The word piezo derives from ancient Greek "piezein" which means to squeeze or press When pressure is applied in a piezoresistive material (silicon):

• Shift in the atomic positions -> affects the electric charge transport -> change in conductivity

Thin silicon crystal layer used as a membrane:

- Membrane deformation -> piezo resistive effect
- Piezo resistive elements form a Wheatstone bridge which can be excited with constant current
- Vmeas [mV] is a measure of the membrane deformation and therefore the pressure

Piezo gauge variants based on location in LHC

HL-LHC requirements

For HL at P1 and P5 the IV volumes increase and x32 additional piezo gauges are needed:

- QXL (x4)
- Crab cavities (x8)
- D2 (x4)
- Cold powering (x16)
- IT-String (x3)
- **BGC** (x2)

The present IV inventory cannot cover the HL needs using APR gauge

• Just few spares in stock for LHC operation

Not manufactured any more

New gauge technical specifications

Same range of pressure measurement

- 0 2000 mbar
- Sensitivity in the order of 77 uV/(mbar.mA)
- Same flange (KF16)
- Same or similar electrical connection to Burndy 4
- Less than ±1% FS accuracy
- EPDM seals or preferably fully welded sensor
- Compatible with current controller and cabling infrastructure
 - Bridge excitation in the order of 4mA
 - Differential measurement in the order of 600mV
- Passive gauge with a tolerance to radiation
 - 200 kGy

Radiation levels in LSS1/5

Annual HL-LHC dose 80cm below the beam in the LSS of IP1 and IP5

CERN

Optics v1.5 May 2019

The STS company

OEM solutions

Machine and Plant

Test & Measurement **Automotive Aviation** Construction

https://www.stssensors.com/

Automotive Railway

- Swiss company with applications in several industries
- Main products include sensors for:
 - Pressure
 - l evel .
 - Very friendly staff and available for custom solution
 - without a minimum order quantity
- Manage development & productions for other companies
 - HUBA piezo sensor for DS/ARCs manufactured by STS
- Involved with ITER for piezo resistive sensors

STS article

ITER International Thermonuclear Experimental Reactor for nuclear fusion

Nuclear Applications, Topics Competence Platform

Gas

Mining

Life science & Medical

Oil & Subsea

Explosion Protection

STS gauge construction

Radiation effects on oils and lubricants

Viscosity change

Depends on the exact silicon-based oil chemical composition, the type of radiation, flux and duration

- Chain scission and crosslinking of molecules
- Radiation induced oxidation (caused by production of free radicals)
- many other mechanisms..

Production of gasses

 Radicals recombination into gaseous hydrocarbons (ethane, methane, etc..) depending on temperature and pressure

WACKER® AS 100

Mineral oils					
Esters					
Polyglycols	<u></u>	31111			
Silicones					
Silicates					
Phosphates			8		
Chlorofluorocarbons					
Fluorinated compounds					
	Gam	ma dose, G	By, in oxygen-f	free atmosph	eres
	ſ				
	104	10 ⁵	106	107	10 ⁸
s year and more sharin't operating conditions downed.	Damag	e	Utility		
on the product label. Storage heyront the date speeched on the label date of necessarily means that the product is no longer usable. In this case however, the properties required for the labeled one much her heard and the month.		t to mild	Nearly alway	susable	
In the memory war have be uncleaded for quality associated reasons. Safety notes Comprehensive instructions are given in the	Mild to	moderate	Often satisfa	ctory	
comisioniding Material Safety Data Ebents. They are available on requestion WACKER subsistance or may be printed via WACKER web alte http://www.wacker.com.	Modera	ite to severe	Not recomm	ended	

Q6 🔶 D2

Irradiation test workflow

Irradiation at external facility - STERIS

Test procedure

Passive Gamma irradiation at atmospheric pressure

- Pre-irradiation leak test (AL4030)
- 8 samples sent in total:
 - 2 samples at 50kGy
 - 2 samples at 100kGy
 - 2 samples at 500kGy
 - 2 samples at 1MGy
- Post-irradiation leak test (AL4030)

Leak detection pre- and post-irradiation

Sample	Pre-irradiation [mbar.l/s]	Post-irradiation [mbar.l/s]
A1 – 50kGy	4.10 ⁻⁸	1,8.10 ⁻⁸
A2 – 50kGy	2,2.10 ⁻⁸	1,6.10 ⁻⁸
B1 – 100kGy	2,5.10 ⁻⁸	5,7.10 ⁻⁸
B2 – 100kGy	4,8.10 ⁻⁸	4.10 ⁻⁸
C1 – 500kGy	2,4.10 ⁻⁸	2,8.10 ⁻⁸
C2 – 500kGy	5,4.10 ⁻⁸	6,8.10 ⁻⁸
D1 – 1MGy	2,4.10 ⁻⁸	3,6.10 ⁻⁸
D2 – 1MGy	2,6.10 ⁻⁸	4.10 ⁻⁸

No significant differences between pre- and post-irradiation

Irradiation at internal facility – CC60

Internal facility CC60

Located in 772 at Prevessin site Equipped with a 110TBq gamma source Dose rates from 436 Gy/h to 0.36 Gy/h

Pre-irradiation leak test (AL4030)

Test procedure

- Pre-irradiation characterization (lab)
- 3 samples and 1 reference with online monitoring every 1s:

Active Gamma irradiation at atmospheric pressure

- 1 campaign in 2022 up to 60kGy with a dose rate of 65Gy/h
- 1 campaign in 2023 from 60kGy to 180kGy with a dose rate of 400Gy/h
- Post-irradiation leak test (AL4030)
- Post-irradiation characterization (lab)

•

Leak detection pre- and post-irradiation

		2022 campaign	2023 campaign
Gauges	Pre-irradiation [mbar.l/s]	Post-irradiation @ 60kGy [mbar.l/s]	Post-irradiation @ 180kGy [mbar.l/s]
Reference	1,3.10 ⁻⁷	1,3.10 ⁻⁷	1.10 ⁻⁸
DUT1	9,2.10 ⁻⁸	1,5.10 ⁻⁷	2,3.10 ⁻⁸
DUT2	9,4.10 ⁻⁸	7,3.10 ⁻⁸	7,6.10 ⁻⁸
DUT3	1,2.10 ⁻⁷	1.10 ⁻⁷	1,7.10 ⁻⁸

Not increased leak rate due to radiation

Measurement error from the online monitoring

Measurement error from 2022 campaign

ÉRN

Description of issues from 2023 campaign

The gauges start failing during the 2nd campaign at around 70 – 75 kGy Apart from the very high dose rate (400Gy/h), no other apparent reason for these failures

- Control system and cabling cross-checked and OK
- No failure of the reference gauge
- No indication of sudden temperature rise
- Similar behavior to a load changing its resistance

2 DUT sent to STS company for debugging & 1 DUT remained at CERN

Visual inspection

CERN analysis

Sample CC60 1C

STS analysis

Sample CC60 2C

Sample CC60 3C

CERN and STS have seen the same issue for all 3 samples: resistors!

CERN analysis

Reverse engineered the PCB

- 3.3k resistors seems to be part of the calibration for gain and offset
- 68k resistor seems to be balancing the bridge (possibly temperature compensation – TBC by STS)

Each individual resistor was measured

- 68k increased to 119k
- 3.3k increased to 4.5k and 3.5k

Measured the measuring cell

- Fully operational with a small resistance deviation
- R ratio from 0Gy to 180kGy deviated by 0.01kOhm

CERN analysis

Understand if the measuring cell is functional

- Replaced all the resistors of the PCB
- Not possible to replace the potentiometers
- Mounted the gauge back to the chamber

The set of cell and potentiometers are degraded but functional

- offset of about 20mbar
- 5% drift at 500mbar
- 2.5% at 2000mbar
- The offset and FS error is less comparing to 60kGy plot

Error can be compensated with the conditioning electronics

- Compensation works at 60kGy (slide 20)
- To be tested in the lab

pre irradiation — Post-irradiation after repair

STS analysis

Stainless steel membrane in normal condition

Membrane removed Discoloration of sintered ceramic

Comparison of sintered ceramic

Chip no abnormality Viscosity of oil seems unchanged

Degradation of the measuring cell

- Increased bridge resistance from 3.256 to 3.439 k Ω @ 2bar
- Increased errors
- Unable to comment about the contribution of the oil on these results

Remarks and conclusions

- STS makes compatible gauges to the APR which fit well within the control's architecture
- The STS gauge show no differences pre- and post-irradiation on leak tightness
- The use of oil in the measuring cell is not ideal but can be safely used
 - Oil can burst only to the outside
 - Burst pressure >200 bar
- Reasonable errors up to 60kGy
 - At the beginning of LS offsets may be observed during venting
 - During each LS calibration shall take place (standard procedure)
 - Replacement of gauges when TID of 60-70kGy is reached
 - Small cost impact (gauge < 350CHF)

HL-LHC Location	Annual Dose [kGy/y]	TID [kGy] Run 4	TID [kGy] Run 5
Q2A	2	7	14
DFX	10	35	70 (replacement)
D2 & DFM	20	70 (replacement)	70 (replacement)
CRAB 1	10	35	70 (replacement)
CRAB 2	8	28	56 (replacement)
QXL	6	21	42
Q4	2	7	14
Q5	2	7	14
Q6	1	3.5	7
QRL	1	3.5	7

Future work

- The R2E community at CERN has no explanation so far for the resistor issues
 - Effort to understand if the high dose rate of the second run had an impact on the resistor failure
 - Several tests are being prepared at CC60 to validate this hypothesis
 - Gauges in HDR and LDR either in active or passive gamma test
 - Test PCBs with a variety of resistors technologies, sizes that can be tested in HDR or LDR

Continue the collaboration with STS

- Aim to decouple the radiation effects on the chip, on the oil and on the PCB
- Create a custom product that could replace APR017 and survive the radiation environment of HL-LHC

• Evaluate other solutions in collaboration with TE-CRG

- Baumer strain gauge 0 4bar
 - Tested up to 1kGy by TE-CRG
 - Very small sensitivity (1.75 uV/(mbar.mA) vs 25 uV/(mbar.mA) -> has an impact on our electronics)
 - Can be bought in multiples of 100 units (1.3kCHF per gauge)
- ABB (similar technology with STS; oil filling)
- Radiation hard gauges from SIGMANETIC and EFE
 - Thin film metal membrane without oil. Very small sensitivity. High price

Thank you! Any questions?

home.cern