MACHINE LEARNING FOR PARTICLE PHYSICS SIMULATIONS

Raghav Kansal UCSD, Fermilab

Fermilab

MODE Workshop 24th July 2023

Sources <u>S. Sekmen, LPC 2017</u> <u>F. Krauss, Kyoto 2011</u>

Raghav Kansal

- Opportunity for ML alternatives in many steps
- Trading accuracy of FullSim (GEANT + reco) for speed and differentiability
- Trading interpretability/trust for # of steps

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models
 - $p_{\theta}(\mathbf{x})$ typically modelled using high-capacity DNNs

ML LANDSCAPE

• Maximise an approximation to the likelihood

• Can also be restrictive

(Score-based) Diffusion

- Learn $-\partial \ln p(\mathbf{x})/\partial \mathbf{x}$ (score) instead of $p(\mathbf{x})$ directly
- Less restrictive, score doesn't need to be normalised
- Current industry SOTA (DALL-E, StableDiffusion etc.)
- But slow need O(100)s of steps along the score

Raghav Kansal

APPROACHES

ATLAS FASTSIM

- GANs used already for fast sim
 - One component of "AtlFast3"
 - 7B events for Run 2 analyses!
- Trained on hadron shower images
- Reasonable performance but:
 - Room for improvement
 - "Voxelisation" to deal with sparsity and high granularity
 - 300 GANs trained for each E, η bin

7

CALORIMETER SHOWERS

Idea: learn distribution of hits per gen particle i.e., replacing GEANT

MODE Workshop

DATA REPRESENTATIONS

- Properties of LHC data:
 - Sparsity
 - High granularity
 - Irregular geometry
 - No fixed ordering
- Point clouds:
 - Store only the hits/particles
 - Retain feature precision
 - Are flexible, work for any geometry
 - Have no ordering
 - \Rightarrow Natural representation for HEP data

POINT CLOUD MODELS

• Want to learn global features and inter-particle correlations

• And speed it up with transformers

POINT CLOUD MODELS

• Want to learn global features and inter-particle correlations

• And speed it up with transformers

JETS

• Idea: learn distribution of PF cands per gen parton i.e., replacing Pythia + GEANT + reco

MODE Workshop

END-TO-END

• Idea: directly from gen-level features (jet \overrightarrow{p} , MET etc.) to reconstructed features

HOW DO WE CONVERGE?

COMMON DATASETS

• Need common datasets to fairly compare models

- Public "challenge" for calorimeter simulations
- 3 image-based datasets based on ATLAS-like and general detectors

- Public library and (collection of) jet datasets
- All point-cloud based, simplified reco
- Basis for majority of recent work on jets

See talk by M. Giannelli!

PROBLEM: MPGANVS GAPT

- Both are very well performing on same dataset
- How do we decide which is better?
- How do we decide if either can replace existing simulations?

SOLUTION: COMMON METRICS

- Need standard, quantitative metrics to compare, validate, and trust models
- Studied in detail in <u>2211.10295</u> in terms of two-sample GoF tests
 - Traditional method is looking at 1 or 2D histograms
 - Should be quantified, can miss correlations
 - Many multivariate GoF tests studied
 - Fréchet and kernel physics distances found to be most sensitive
- Starting to be adopted for jets

	FPD $\times 10^3$	KPD $\times 10^3$	$W^M_1 imes 10^3$	$W_{1p}^{p_{\mathrm{T}}^{\mathrm{rel}}}$ ×10 ³
Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05	0.44 ± 0.09
MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06	0.6 ± 0.2
GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08	0.51 ± 0.09

- Aim is to establish recommendations for validating ML simulations
 - See talk at <u>PHYSTAT</u>

CONCLUSION

• Expect fast simulations to be necessary for HL-LHC (if not sooner)

- Exciting potential to speed up full sim/reco pipeline with generative ML
 - Bonus: differentiable!

Many approaches now in HEP

- Starting to converge:
 - Need to test on realistic detector datasets (or real data!)
 - Need to validate rigorously

• Full detector simulation takes ~40% of grid CPU resources

- Order-of-magnitude more simulations needed in the next decade
- Complexity of the simulations will also increase
- ML a possible solution?

MORE METRICS

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>
 - Can be powerful test of quality and diversity
 - Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency
 - In terms of GOF testing: comparing different test statistics for different models

ML LANDSCAPE

- Maximise an approximation to the likelihood
- Can also be restrictive

(Score-based) Diffusion

- Learn $-\partial \ln p(\mathbf{x})/\partial \mathbf{x}$ (score) instead of $p(\mathbf{x})$ directly
- Less restrictive, score doesn't need to be normalised
- Current industry SOTA (DALL-E, StableDiffusion etc.)
- But slow need O(100)s of steps along the score

Raghav Kansal

MODE Workshop

DIRECT MODELLING

2. Simple $-\ln p(\mathbf{x})$ loss

• But in practice they are typically outperformed by GANs (next slide)

3. Stable training

LATENT VARIABLE MODELS

- Assume high dimensional data ${f x}$ can be characterised by lower dimensional 'latent' (hidden) features ${f z}$
- Generative process: sample from simpler prior $\mathbf{z} \sim p(\mathbf{z})$ and learn $p(\mathbf{x} \mid \mathbf{z}) \Rightarrow p(\mathbf{x}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})d\mathbf{z}$

- Abandon likelihood-based loss approach
- Iteratively train 'discriminator' network as an adversarial loss for the 'generator'
- I) Hard to train; 2) lose likelihood; 3) adversarial;
 but when done right tends to be most performant*

• *UNTIL last year where score-based diffusion models started beating GANs for the first time! (next slide)

SCORE-BASED MODELS

- Modelling $\nabla_{\mathbf{x}} \ln p(\mathbf{x})$ (the 'score function') instead of $p(\mathbf{x})$
- Retain access to likelihood, no need for normalisation
- Many methods for learning $\nabla_{\mathbf{x}} \ln p(\mathbf{x})$: 'score-matching'
 - e.g. diffusion models (but interpreted differently)
- With lots of clever tricks, such models beat GANs
- But very slow, and very new so will require model development and tuning still, very interesting area!

 $p(\mathbf{x})$ can be accessed via the score function (source)

Diffusion Models Beat GANs on Image Synthesis (Dhariwal and Nichol 2021)

TEST CRITERIA

- To **trust** generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To **compare** generative models, tests should be:
 - Standardised
 - Reproducible
 - ~Efficient

IDEAS

- Look at histograms
 - Useful, but need to quantify
 - Only I or 2D
- Multi-dim goodness-of-fit tests?

• Wasserstein distance

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)
 - Computationally efficient
 - Gaussian assumption

- $FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$ $(\mathbf{x}_{real}) \quad \{\mathbf{x}_{gen}\}$
- Biased (FGD_{∞} extrapolate to infinity)

- Wasserstein p-distances (W_p) :
 - \mathcal{F} is all K-Lipschitz functions
 - "Work" needed to transport probability mass
 - Sensitive to quality and diversity
 - Computationally challenging for large N, D
 - Biased estimators

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in \mathcal{F}
 - Proposed in computer vision (KID), 3rd order polynomial kernel
 - Unbiased estimators
 - Kernel dependent

Gretton 2020

FRÉCHET <CLASSIFIER> DISTANCES

Machine learning version of this: use classifier hidden features instead!
 Kans

Kansal et al., NeurIPS 2021

• Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:
 - Single aggregate score, correlations (Σ) between features, easy to scale

MAXIMUM MEAN DISCREPANCY

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

TESTS FOR QUALITY / DIVERSITY

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage (<u>Naeem et al 2020</u>)
 - Like P&R, but takes into account density of real manifold

TOY DISTRIBUTIONS

MODE Workshop

RESULTS

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein Significance								
$\mathrm{FGD}_{\infty} \times 10^{3}$ Significance								
MMD Significance								
Precision Significance								
Recall Significance								
Diversity Significance								
Coverage Significance								

RESULTS

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	$\boldsymbol{0.036 \pm 0.003}$	0.191 ± 0.005
Significance		284 ± 6	7 ± 1	16 ± 1	2460 ± 30	241 ± 3	5.2 ± 0.5	44 ± 1
$FGD_{\infty} \times 10^3$	0.27 ± 0.08	1002 ± 4	11.5 ± 0.5	28.4 ± 0.5	9400 ± 20	941 ± 2	0.4 ± 0.1	0.21 ± 0.07
Significance		$\textbf{11960} \pm \textbf{40}$	${\bf 134 \pm 6}$	$\textbf{336} \pm \textbf{6}$	112300 ± 200	11230 ± 20	1.3 ± 0.4	0
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	$19\mathrm{k}\pm1\mathrm{k}$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Significance		790 ± 40	3 ± 2	19 ± 4	$920\mathrm{k}\pm70\mathrm{k}$	204 ± 6	2.3 ± 0.8	16 ± 1
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	0.998 ± 0.001
Significance		12.2 ± 0.1	0	0.440 ± 0.003	119 ± 4	0	0	0
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.998 ± 0.001	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	0.997 ± 0.001
Significance		5.38 ± 0.02	0.227 ± 0.000	0	0	420 ± 10	0.762 ± 0.001	0
Diversity	0.979 ± 0.005	0.969 ± 0.007	0.980 ± 0.005	0.977 ± 0.006	0.486 ± 0.007	0.98 ± 0.01	0.981 ± 0.007	0.98 ± 0.01
Significance		2.11 ± 0.02	0	0.335 ± 0.002	109 ± 2	0	0	0.654 ± 0.007
Coverage	0.946 ± 0.004	0.791 ± 0.008	0.944 ± 0.002	0.939 ± 0.002	0.580 ± 0.003	0.367 ± 0.004	0.942 ± 0.003	$\boldsymbol{0.717 \pm 0.003}$
Significance		43.8 ± 0.4	0.493 ± 0.001	2.047 ± 0.004	103.6 ± 0.6	164 ± 2	1.094 ± 0.004	64.9 ± 0.3

- Wasserstein, FGD_{∞} , MMD find all alternatives discrepant, except FGD_{∞} on mixtures

RESULTS

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	0.036 ± 0.003	0.191 ± 0.005
Significance		284 ± 6	7 ± 1	16 ± 1	2460 ± 30	241 ± 3	5.2 ± 0.5	44 ± 1
$FGD_\infty \ \times 10^3$	0.27 ± 0.08	1002 ± 4	11.5 ± 0.5	28.4 ± 0.5	9400 ± 20	$\bf 941 \pm 2$	0.4 ± 0.1	0.21 ± 0.07
Significance		11960 ± 40	134 ± 6	336 ± 6	112300 ± 200	11230 ± 20	1.3 ± 0.4	0
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	$19\mathrm{k}\pm1\mathrm{k}$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Significance		790 ± 40	3 ± 2	19 ± 4	$\mathbf{920k} \pm \mathbf{70k}$	204 ± 6	2.3 ± 0.8	16 ± 1
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	0.998 ± 0.001
Significance		12.2 ± 0.1	0	0.440 ± 0.003	119 ± 4	0	0	0
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.998 ± 0.001	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	0.997 ± 0.001
Significance		5.38 ± 0.02	0.227 ± 0.000	0	0	420 ± 10	0.762 ± 0.001	0
Diversity	0.979 ± 0.005	0.969 ± 0.007	0.980 ± 0.005	0.977 ± 0.006	0.486 ± 0.007	0.98 ± 0.01	0.981 ± 0.007	0.98 ± 0.01
Significance		2.11 ± 0.02	0	0.335 ± 0.002	109 ± 2	0	0	0.654 ± 0.007
Coverage	0.946 ± 0.004	0.791 ± 0.008	0.944 ± 0.002	0.939 ± 0.002	0.580 ± 0.003	0.367 ± 0.004	0.942 ± 0.003	$\boldsymbol{0.717 \pm 0.003}$
Significance		43.8 ± 0.4	0.493 ± 0.001	2.047 ± 0.004	103.6 ± 0.6	164 ± 2	1.094 ± 0.004	64.9 ± 0.3

- Wasserstein, FGD_{∞} , MMD find all alternatives discrepant, except FGD_{∞} on mixtures

• FGD_{∞} generally the most sensitive otherwise, but misses shape distortions

RESULTS

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	0.036 ± 0.003	0.191 ± 0.005
Significance		284 ± 6	7 ± 1	16 ± 1	2460 ± 30	241 ± 3	5.2 ± 0.5	44 ± 1
$\mathrm{FGD}_{\infty}\times 10^3$	0.27 ± 0.08	1002 ± 4	11.5 ± 0.5	28.4 ± 0.5	9400 ± 20	941 ± 2	0.4 ± 0.1	0.21 ± 0.07
Significance		$\textbf{11960} \pm \textbf{40}$	134 ± 6	$\textbf{336} \pm \textbf{6}$	112300 ± 200	11230 ± 20	1.3 ± 0.4	0
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	$19\mathrm{k}\pm1\mathrm{k}$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Significance		790 ± 40	3 ± 2	19 ± 4	$920\mathrm{k}\pm70\mathrm{k}$	204 ± 6	2.3 ± 0.8	16 ± 1
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	0.998 ± 0.001
Significance		12.2 ± 0.1	0	0.440 ± 0.003	119 ± 4	0	0	0
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.998 ± 0.001	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	0.997 ± 0.001
Significance		5.38 ± 0.02	0.227 ± 0.000	0	0	420 ± 10	0.762 ± 0.001	0
Diversity	0.979 ± 0.005	0.969 ± 0.007	0.980 ± 0.005	0.977 ± 0.006	0.486 ± 0.007	0.98 ± 0.01	0.981 ± 0.007	0.98 ± 0.01
Significance		0.11 1 0.00	0	0 225 1 0 000	100 ± 2	0	0	0.654 ± 0.007
Digililicance		2.11 ± 0.02	0	0.335 ± 0.002	109 ± 2	0	0	0.004 ± 0.001
Coverage	0.946 ± 0.004	2.11 ± 0.02 0.791 ± 0.008	$0 \\ 0.944 \pm 0.002$	0.335 ± 0.002 0.939 ± 0.002	109 ± 2 0.580 ± 0.003	0.367 ± 0.004	0.942 ± 0.003	0.717 ± 0.003

- Wasserstein, FGD_{∞} , MMD find all alternatives discrepant, except FGD_{∞} on mixtures

- FGD_{∞} generally the most sensitive otherwise, but misses shape distortions
- Precision and recall do their job, density and coverage give unintuitive results

RESULTS

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	$\begin{array}{c} 5.8\pm0.2\\111\pm3\end{array}$
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$\begin{array}{c} 0.03\pm0.01\\ 0.8\pm0.4 \end{array}$	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{EFP} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.08 ± 0.03 —	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} 3.6 \pm 0.3 \\ 103 \pm 8 \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08\pm0.05\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.01\pm0.02\\ 3\pm5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1 —	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	0.88 ± 0.08 0.109 ± 0.009	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$0.79 \pm 0.09 \\ 0.9 \pm 0.1$
Recall EFP Sign.	0.9 ± 0.1 —	0.88 ± 0.07 0.16 ± 0.01	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	0.92 ± 0.06 0	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{PN} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
$\begin{array}{c c} \text{MMD PN} \times 10^3 \\ \text{Sign.} \end{array} \right $	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2 \end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	0.68 ± 0.07 —	0.64 ± 0.04 0.57 ± 0.04	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09 \pm 0.04 \\ 8 \pm 4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	0.39 ± 0.08 4.0 ± 0.8
Recall PN Sign.	$\begin{array}{c} 0.70 \pm 0.05 \\ \end{array}$	$\begin{array}{c} 0.61 \pm 0.04 \\ 1.8 \pm 0.1 \end{array}$	$\begin{array}{c} 0.61\pm0.08\\ 1.8\pm0.2 \end{array}$	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.014 \pm 0.009 \\ 14 \pm 9 \end{array}$	0.7 ± 0.1 0	$\begin{array}{c} 0.01\pm0.01\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.57\pm0.09\\ 2.6\pm0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	0.52 0.53	$0.54 \\ 0.55$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

 Precision, recall work roughly - useful for diagnosing failure modes but not for comparing

RESULTS

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2\end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	$\begin{array}{c} 5.8\pm0.2\\ 111\pm3 \end{array}$
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09\pm0.05\\ 6\pm4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$\begin{array}{c} 0.03\pm0.01\\ 0.8\pm0.4 \end{array}$	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{EFP} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.08 ± 0.03	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} 3.6 \pm 0.3 \\ 103 \pm 8 \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08 \pm 0.05 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.01\pm0.02\\ 3\pm5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	$\begin{array}{c} 0.88 \pm 0.08 \\ 0.109 \pm 0.009 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3 \end{array}$	$0.79 \pm 0.09 \\ 0.9 \pm 0.1$
Recall EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.88 \pm 0.07 \\ 0.16 \pm 0.01 \end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1\end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	7.6 ± 0.2 95 ± 3
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{PN} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	4.3 ± 0.4 9.8 ± 0.9	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
$\begin{array}{c c} \text{MMD PN} \times 10^3 \\ \text{Sign.} \end{array}$	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2 \end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	0.68 ± 0.07	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39\pm0.08\\ 4.0\pm0.8\end{array}$
Recall PN Sign.	0.70 ± 0.05 —	$\begin{array}{c} 0.61 \pm 0.04 \\ 1.8 \pm 0.1 \end{array}$	$\begin{array}{c} 0.61\pm0.08\\ 1.8\pm0.2 \end{array}$	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	0.014 ± 0.009 14 ± 9	$\begin{array}{c} 0.7\pm0.1\\ 0\end{array}$	0.01 ± 0.01 10 ± 10	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$0.54 \\ 0.55$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

 Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies

Sample feature distributions, with our MPGAN compared to FC and GraphCNN generators + PointNet discriminators

- Masking strategy is successful
- MPGAN again best performing on every metric, apart from WI-P, significantly so on WI-M, WI-EFP, FPND
- Mass and ave. EFP scores all within error of the real vs real baseline

BASELINE POINT CLOUD GANS

We compare with existing point cloud GANs as baselines, two relevant architectures are:

RESULTS: GLUON Karsal et al., NeurIPS 2020 Kansal et al., NeurIPS 2021

