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https://indico.cern.ch/event/596660/contributions/2412429/attachments/1411828/2159813/SekmenFSDHowITWorks170213.pdf
https://www.ippp.dur.ac.uk/~krauss/Lectures/MonteCarlos/MC2_Kyoto.pdf
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LHC SIMULATIONS
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K. Pedro, HSF 2020

• Opportunity for ML alternatives in many steps

• Trading accuracy of FullSim (GEANT + reco) for speed  
and differentiability

• Trading interpretability/trust for # of steps

https://indico.cern.ch/event/941278/contributions/4084848/
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• Want model  for underlying data distribution 

• Rich area in machine learning: deep generative models

•  typically modelled using high-capacity DNNs

pθ(x) p(x)

pθ(x)
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ML LANDSCAPE

• Learn transformations from simpler  to 

• Access to exact likelihood

• But restrictive

π(z) p(x)

• Maximise an approximation to the likelihood

• Can also be restrictive

• Minimise loss wrt to discriminator classifying real or fake

• Less restrictive, generally higher performing

• Difficult to train

• Learn  (score) instead of  directly

• Less restrictive, score doesn’t need to be normalised

• Current industry SOTA (DALL-E, StableDiffusion etc.)

• But slow - need O(100)s of steps along the score

−∂ ln p(x)/∂x p(x)

Flows

π(z) p(x)

z

x

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

(Score-based) Diffusion
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APPROACHES
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• asdf

• asdf

7

ATLAS FASTSIM

AtlFast3, ATLAS Collaboration 2022

• GANs used already for fast sim 

• One component of “AtlFast3”

• 7B events for Run 2 analyses!

• Trained on hadron shower images

• Reasonable performance but:

• Room for improvement

• “Voxelisation” to deal with sparsity 
and high granularity 

• 300 GANs trained for each E,  binη

https://arxiv.org/abs/2109.02551
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• Idea: learn distribution of hits per gen particle i.e., replacing GEANT
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CALORIMETER SHOWERS

• VAE + GAN + postprocessing

• 0.1µs/shower*

• Series of normalising flows

• 7µs/shower*

• Compared /shower with GEANTO(10s)

• Reproducing shower images

• Good agreement with simplified 
ILD-like single γ showers

*A100 GPU

• Diffusion based models

• Good agreement with different datasets

• Generally slower than GANs

• 0.3s/shower*

L2LFlows (2302.11594)BIB-AE (2112.09709) Sample GEANT shower

CaloScore (2206.11898) CaloDiffusion (CHEP 2023)

https://arxiv.org/abs/2302.11594
https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2206.11898
https://indico.jlab.org/event/459/contributions/11736/
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• Properties of LHC data:

• Sparsity

• High granularity

• Irregular geometry

• No fixed ordering

9

DATA REPRESENTATIONS

RecoHits

Hit coordinates, energy
Particle coords, momentum

Image repr. for CNNs

“Jets”

Row entry

η φ pT

Particle/Hit 1

Particle/Hit 2⋯
px py pz

or

η

φ

Energy/  node featurespT

• Point clouds:

• Store only the hits/particles

• Retain feature precision

• Are flexible, work for any geometry

• Have no ordering

 Natural representation for HEP data⇒

Reco
Particles
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POINT CLOUD MODELS
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• And speed it up with transformers

Generative Adversarial 
Particle Transformer (GAPT)

RK et al., PRD 2023

• Want to learn global features and inter-particle correlations

https://arxiv.org/abs/2106.11535
https://arxiv.org/abs/1810.00825
https://arxiv.org/abs/2211.10295
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JETS

• GANs

• Good agreement with 
simplified CMS-like jets

• MPGAN: 41µs/jet* 
GAPT: 9µs/jet*

• Diffusion models

• Also point-cloud based

• Good agreement

• Slower than GANs

• (1ms)/jet*

• But distillation brings this down to (10µs)/jet

O

O

*Single GPU

Gluon Jets

PC-JeDi (2303.05376)

FPCD (2304.01266)

• Idea: learn distribution of PF cands per gen parton i.e., replacing Pythia + GEANT + reco

https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2304.01266
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END-TO-END

Analysis-Specific FastSim 
(Chen et al., CSBS 2021)

• Idea: directly from gen-level features (jet , MET etc.) to reconstructed features⃗p

FlashSim 
(Vaselli et al., in prep)
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HOW DO WE CONVERGE?

14
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• Need common datasets to fairly compare models

15

COMMON DATASETS

• Public “challenge” for calorimeter simulations

• 3 image-based datasets based on ATLAS-like 
and general detectors

• Public library and (collection of) jet datasets

• All point-cloud based, simplified reco

• Basis for majority of recent work on jets

CaloChallenge 2022-23

JetNet

JetNet

See talk by M. Giannelli!

https://calochallenge.github.io/homepage/
https://github.com/jet-net/JetNet
https://indico.cern.ch/event/1242538/timetable/#115-summary-of-calochallenge
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• Both are very well performing on same dataset

• How do we decide which is better?

• How do we decide if either can replace existing simulations?

16

PROBLEM: MPGAN VS GAPT
Gluon Jets 
30 particles
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• Need standard, quantitative metrics to compare, validate, and trust models

• Studied in detail in 2211.10295 in terms of two-sample GoF tests

• Traditional method is looking at 1 or 2D histograms

• Should be quantified, can miss correlations

• Many multivariate GoF tests studied

• Fréchet and kernel physics distances found to be most sensitive

• Starting to be adopted for jets

• Aim is to establish recommendations for validating ML simulations

• See talk at PHYSTAT

17

SOLUTION: COMMON METRICS

https://arxiv.org/abs/2211.10295
https://indico.cern.ch/event/1258983/timetable/#6-applications-to-deep-generat
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• Expect fast simulations to be necessary for HL-LHC (if not sooner)

• Exciting potential to speed up full sim/reco pipeline with generative ML

• Bonus: differentiable!

• Many approaches now in HEP

• Starting to converge:

• Need to test on realistic detector datasets (or real data!)

• Need to validate rigorously

18

CONCLUSION



BACKUP

19
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• Full detector simulation takes ~40% of grid CPU resources

• Order-of-magnitude more simulations needed in the next decade

• Complexity of the simulations will also increase

• ML a possible solution?

20

LHC SIMULATIONS Sources
K. Pedro, HSF 2020

J. Duarte, ANL 2021, Video

Luminosity (~ how much 
data is collected) is only 

going to increase

https://indico.cern.ch/event/941278/contributions/4084848/
https://www.dropbox.com/s/vc6m16rgij6fnb7/Argonne_Edge_12Aug2021.pdf?dl=0
https://argonne.zoomgov.com/rec/play/uCjdk4Pk436S5NYn3s7VEzE7fvRhnfpUeHAq__pEclUxnzu6HANitZPWywYkCIxVFISW8xaL-TERBiCN.6lA2KaFd8UPzCj0N?continueMode=true
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• Precision and recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold

• Can disentangle quality and diversity

• Classifier-based metrics: train a classifier between real and generated data  
Friedman 2003, Paz and Oquab 2017 (C2ST), Krause and Shih (2021)

• Can be powerful test of quality and diversity

• Practical limitations: interpretability, generalising to conditional generation, standardising a 
specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency

• In terms of GOF testing: comparing different test statistics for different models

21

MORE METRICS

https://arxiv.org/pdf/1904.06991.pdf
https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf
https://arxiv.org/pdf/1610.06545.pdf
https://arxiv.org/pdf/2106.05285.pdf
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ML LANDSCAPE

• Learn transformations from simpler  to 

• Access to exact likelihood

• But restrictive

π(z) p(x)

• Maximise an approximation to the likelihood

• Can also be restrictive

• Minimise loss wrt to discriminator classifying real or fake

• Less restrictive, generally higher performing

• Difficult to train

• Learn  (score) instead of  directly

• Less restrictive, score doesn’t need to be normalised

• Current industry SOTA (DALL-E, StableDiffusion etc.)

• But slow - need O(100)s of steps along the score

−∂ ln p(x)/∂x p(x)

Flows

π(z) p(x)

z

x

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

(Score-based) Diffusion
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DIRECT MODELLING
• Model assumption:  can be predicted entirely by 

• Iteratively output  based on  using learnt 

xi x<i

xi x<i p(xi |x<i)

π(z) p(x)

• Backward: learn transformation from  to simpler  

• Forward: sample , invert transformation, get 

p(x) π(z)

π(z) p(x)

p(x) = p(x1)
N−1

∏
i=2

p(xi |x<i)

Autoregressive

p(x) = π(x = f −1(z)) ∂f −1(x)
∂x

Flow-based

1. Access to exact likelihood

2. Simple  loss

3. Stable training

−ln p(x)

Diffusion-based

p(x) = p(x |z1)(
T−1

∏
i=1

p(zi |zi+1))p(zT)

x z1 zT

q(zi+1 |zi) = 𝒩(zi+1 |μ(zi), σ(zi))

• Backward: iteratively add gaussian noise

• Forward:  network learns to denoisep(zi |zi+1)

• But in practice they are typically outperformed by GANs (next slide)



Raghav Kansal MODE Workshop 24

LATENT VARIABLE MODELS
• Assume high dimensional data  can be characterised by lower dimensional ‘latent’ (hidden) features 

• Generative process: sample from simpler prior  and learn 

x z

z ∼ p(z) p(x |z) ⇒ p(x) = ∫ p(x |z)p(z)dz

Variational Autoencoder

• ‘Evidence-based Lower BOund’ (ELBO) of  : ln p(x)
ELBO = 𝔼z∼qϕ(z|x)[ln p(x |z)] − KL[qϕ(z |x) | |p(z)]
Autoencoder reconstruction loss Divergence between variational 

posterior and assumed prior

Generative Adversarial Networks
• Abandon likelihood-based loss approach

• Iteratively train ‘discriminator’ network as an adversarial 
loss for the ‘generator’

• 1) Hard to train; 2) lose likelihood; 3) adversarial; 
but when done right tends to be most performant*

• *UNTIL last year where score-based diffusion models started beating GANs for the first time! (next slide)

z

x
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SCORE-BASED MODELS
• Modelling  (the ‘score function’) instead of 

• Retain access to likelihood, no need for normalisation

• Many methods for learning : ’score-matching’

• e.g. diffusion models (but interpreted differently)

• With lots of clever tricks, such models beat GANs

• But very slow, and very new so will require model 
development and tuning - still, very interesting area!

∇xln p(x) p(x)

∇xln p(x)

Diffusion Models Beat GANs on Image Synthesis 
(Dhariwal and Nichol 2021)

 can be accessed via the score function (source)p(x)

https://openreview.net/pdf?id=AAWuCvzaVt
https://openreview.net/pdf?id=AAWuCvzaVt
http://yang-song.github.io/blog/2021/score/
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• To trust generated data, tests should be:

• Sensitive to quality

• Sensitive to diversity

• Multivariate (for correlations & conditional generation)

• Interpretable

• To compare generative models, tests should be:

• Standardised

• Reproducible

• ~Efficient

26

TEST CRITERIA
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• Look at histograms

• Useful, but need to quantify 

• Only 1 or 2D

• Multi-dim goodness-of-fit tests?

27

IDEAS
MC generator evaluation (Ellis et al ’96)

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg))

{xreal} {xgen}

Gretton 2020

• Wasserstein distance

• Sensitive, but hard to estimate

• Fréchet distance

• Approximate Wasserstein

• Standard in ML (FID)

• Maximum mean discrepancy  
(MMD)

• Embed samples in kernel space

• Distance in embedding space

• Also used in ML (KID)

https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf
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MORE ON IPMS
• Fréchet Gaussian Distance (FGD)

• Fréchet /  distance between multivariate Gaussian fitted to observations 

• Standard in computer vision (FID)

• Computationally efficient

• Gaussian assumption

• Biased (  - extrapolate to infinity)

W2

FGD∞

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg))

{xreal} {xgen}
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MORE ON IPMS
• Wasserstein distances ( ):

•  is all K-Lipschitz functions

• “Work” needed to transport probability mass

• Sensitive to quality and diversity

• Computationally challenging for large N, D

• Biased estimators

p− Wp

ℱ

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |
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MORE ON IPMS
• Maximum mean discrepancy (MMD)

•  is reproducing Kernel Hilbert space (RKHS) for a chosen kernel 

• Distance between embeddings of  and  in 

• Proposed in computer vision (KID), 3rd order polynomial kernel

• Unbiased estimators

• Kernel dependent

ℱ k(x, y)

preal pgen ℱ

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

Gretton 2020

https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf
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FRÉCHET <CLASSIFIER> DISTANCES
• Machine learning version of this: use classifier hidden features instead!

• Example: apply to jet generation using pre-trained ParticleNet graph classifier :

Real Jets

Gen Jets

μr, Σr

μg, Σg

{30 particles
{ featuresη, φ, pT

Class
{Internal Repr.

Pooling

FCN
knn+ 

EdgeConv

ParticleNet

FCN

• High-performing classifier learns salient hidden features from data

• Retain sensitivity to quality, diversity from , reproducible and efficient plus:

• Single aggregate score, correlations ( ) between features, easy to scale

W1

Σ

Kansal et al., NeurIPS 2021

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg)) = | |μr − μg | |2 + Tr[Σr + Σg−2(ΣrΣg)1/2]

https://arxiv.org/abs/2106.11535
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MAXIMUM MEAN DISCREPANCY
sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |



Raghav Kansal MODE Workshop 33

TESTS FOR QUALITY / DIVERSITY
• Can be valuable to disentangle these

• Precision & Recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold using k-nearest-neighbours

• Precision: fraction of generated samples lying within real manifold (quality)

• Recall: fraction of real samples which lying within gen manifold (diversity)

• Density & Coverage (Naeem et al 2020)

• Like P&R, but takes into account density of real manifold

https://arxiv.org/pdf/1904.06991.pdf
https://arxiv.org/pdf/2002.09797.pdf
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Tests if metrics are sensitive 
to correlations

Tests sensitivity to quality Tests sensitivity to diversity Mixture with same mean, 
variance and covariance as truth: 

Tests sensitivity to shape of 
distribution

Same statistics, but easier to 
distinguish (by eye)

• First testing on toy Gaussian distributions

34

TOY DISTRIBUTIONS
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RESULTS

35
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RESULTS

• Wasserstein, , MMD find all alternatives discrepant, except  on mixturesFGD∞ FGD∞

Most sensitive metric per 
distribution in bold

36
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RESULTS

• Wasserstein, , MMD find all alternatives discrepant, except  on mixtures

•  generally the most sensitive otherwise, but misses shape distortions

FGD∞ FGD∞

FGD∞

Most sensitive metric per 
distribution in bold
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RESULTS

• Wasserstein, , MMD find all alternatives discrepant, except  on mixtures

•  generally the most sensitive otherwise, but misses shape distortions

• Precision and recall do their job, density and coverage give unintuitive results

FGD∞ FGD∞

FGD∞

Most sensitive metric per 
distribution in bold

38
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RESULTSMost sensitive metric per 
distribution in bold

• Precision, recall work roughly - useful for 
diagnosing failure modes but not for 
comparing

39

RK et al., PRD 2023 

https://arxiv.org/abs/2211.10295
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RESULTSMost sensitive metric per 
distribution in bold

• Classifiers, low-level (LLF) and high-level 
features (HLF), identify particle feature 
distortions but miss distribution-level 
discrepancies

40

RK et al., PRD 2023 

https://arxiv.org/abs/2211.10295
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 RESULTS: LIGHT QUARK JETS
Sample feature distributions, with our MPGAN compared to FC and GraphCNN generators + PointNet discriminators

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND Coverage MMD

FC PointNet 1.5 ± 0.1 2.9 ± 0.2 2 ± 1 22k 0.36 0.026

GraphCNN PointNet 3.9 ± 0.2 4.2 ± 1.6 20M ± 10M 19k 0.37 0.031

MP MP 2.1 ± 0.1 0.6 ± 0.1 0.9 ± 0.4 2.4 0.54 0.026

MP PointNet 22.0 ± 0.1 3.2 ± 0.2 5 ± 2 3.6k 0.22 0.035

Real vs real 
W1-P = (0.5 ± 0.1)  10-3×

Real vs real 
W1-M = (0.5 ± 0.1)  10-3×

Real vs real  
W1-EFP = (0.46 ± 0.04)  10-5×

• Masking strategy is successful
• MPGAN again best performing on every metric, apart from W1-P, significantly so on W1-M, W1-EFP, FPND
• Mass and ave. EFP scores all within error of the real vs real baseline
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BASELINE POINT CLOUD GANS
We compare with existing point cloud GANs as baselines, two relevant architectures are:

Fully Connected 
Generator

(Achlioptas et al ’18)

FC Layers

{Noise

30 particles  
 3 features×

Graph Convolutional 
Generator

(Valsesia et al ’19)

FC

Noise

{30 nodes

{Hidden features

knn+ 
EdgeConv

{Final 3 features

PointNet-Mix Discriminator is the most 
performant on ShapeNet, compared to 
FC and GraphCNN (Wang et al ’21)

…{30 particles

{3 features
FC

{Hidden features

…
Max +  

Mean Pool

FC

Real or 
Generated

Real clouds Generated

These GANs work somewhat, 
but not well enough for our 
purpose (next slides)

Interestingly, Wang et al find 
the FC generator works better 
than the GraphCNN (with a 
PointNet-Mix discriminator)
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 RESULTS: GLUON JETS
*Mean and error over 5 sets of 

pairs of 10,000 jets each
Sample feature distributions, with MPGAN compared to baseline point cloud generators

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.3 ± 0.2 1.3 ± 0.4 1.5 ± 0.9 5.0

GraphCNN PointNet 16 ± 6 1.9 ± 0.2 200 ± 1000 7k

MP MP 0.9 ± 0.3 0.7 ± 0.2 0.7 ± 0.2 0.12

MP PointNet 1.2 ± 0.4 1.3 ± 0.4 4 ± 2 18

Real vs real average particle 
features  score*  

(W1-P) = (0.44 ± 0.09)  10-3
W1

×

Real vs real jet mass  score  
(W1-M) = (0.7 ± 0.2)  10-3

W1
× Real vs real average jet EFPs  score  

(W1-EFP) = (0.62 ± 0.07)  10-5
W1
×

• MPGAN generator is the best performing on every metric

• Significantly outperforms alternatives on high level feature metrics (W1-M, W1-EFP, FPND)

• Mass and ave. EFP scores are within error of the real vs real baseline  learning jet substructure correctly⇒

Kansal et al., ML4PS @ NeurIPS 2020
Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
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 RESULTS: TOP QUARK JETS

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.6 ± 0.4 2.7 ± 0.1 7.7 ± 0.5 3.9

GraphCNN PointNet 30 ± 20 11.3 ± 0.9 37 ± 2 30k

MP MP 2.3 ± 0.3 0.6 ± 0.2 2 ± 1 0.37

MP PointNet 1.6 ± 0.4 0.76 ± 0.08 4 ± 1 3.7

Real vs real 
W1-P = (0.55 ± 0.07)  10-3×

Real vs real 
W1-M = (0.51 ± 0.07)  10-3×

Real vs real  
W1-EFP = (1.1 ± 0.1)  10-5×

• MPGAN learns perfectly the complex bimodal jet feature distributions

• Mass and ave. EFP scores remain within error of real vs real baseline


