Estimating Gradients of Programs with Discrete Randomness:

With Applications in Detector Design Optimization

Michael Kagan, SLAC Lukas Heinrich, TUM

3rd MODE Workshop July 26, 2023

$$\min_{\phi} \mathbb{E}[f(x,\phi)] = \min_{\phi} \int f(x,\phi) p_{\phi}(x) dx$$

Events

Analysis /
Design Objective

Design Rating

Detector Design Optimization

$$\min_{\phi} \mathbb{E}[f(x,\phi)] = \min_{\phi} \int f(x,\phi) p_{\phi}(x) dx$$

Design Objective

Realizations of measurements:

E.g. Simulations

Design Parameters

Probability to see a measurement:

E.g. Interaction and detection probability

$$\min_{\phi} \mathbb{E}[f(x,\phi)] = \min_{\phi} \int f(x,\phi) p_{\phi}(x) dx$$

A Problem: Discrete Random Variables & Choices

Discrete random variables and discrete choices are all over HEP

Branching / Showering Processes

Clustering Algorithms


```
def f(x):
    theta = (sin(2.*x))**2
    b = bernoulli(theta)
    g = x*x
    return g+b
```

Bernoulli parameter θ depends on x

$$f(x) = x^2 + b$$
 $b \sim Bernoulli(\theta = \sin^2(2x))$

Gradients of Expected Values

Even if a program contains discrete randomness, expected value of the program may be smooth and have a well-defined derivative

Simple example:

```
def f(theta):
    b = bernoulli(theta)
    return b
```

$$\mathbb{E}[f(\theta)] = \mathbb{E}_{b \sim Bern(\theta)}[b] = \theta$$

$$\nabla_{\theta} \mathbb{E}[f(\theta)] = 1$$

```
def f(x):
    theta = (sin(2.*x))**2
    b = bernoulli(theta)
    g = x*x
    return g+b
```

AD Gradient: $grad(f_i(x))$

True gradient: $\nabla_x E[f(x)]$


```
def f(x):
    theta = (sin(2.*x))**2
    b = bernoulli(theta)
    g = x*x
    return g+b
```

Standard AD tools don't know how to handle discrete randomness that depends on the parameter of differentiation

We need another approach

Derivatives for Discrete Randomness

Do Some Work, Get Better Derivatives Approximate Derivatives

Don't Use Derivatives

Score Functions

Stochastic AD

Smoothing / Relaxations

Surrogates

Gradient-Free Methods

Example:

Differentiable ranking and sorting

HEP Example: Surrogates for

SHiP magnet design

Bayesian Optimization, Genetic Algorithms, ...

MK, et al. <u>2002.04632</u>

Figure credit: C. Fanelli

$$\nabla_{\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)] = \mathbb{E}_{p_{\theta}(x)}[f(x)\nabla_{\theta} \log p_{\theta}(x)]$$

Gradient estimator used in Reinforcement Learning

Works with discrete x and even non-differentiable $f(\cdot)$

Requires tracking probabilities $log p_{\theta}(x)$ throughout program

AlphaStar Vinyals et al. 2019

$$\frac{d}{d\theta} \mathbb{E}_{p_{\theta}}[f(x)] = \mathbb{E}_{p_{\theta}}[\delta + \beta(\mathbf{y} - x)]$$

Standard AD

Weight

Alternative value of rv

Recently, Arya et al. extended fwd-mode AD to discrete-stochastic environments

Importantly, this includes a *composition rule* for how to combine weights β step-by-step along the computation chain

<u>2210.08572</u>

Automatic Differentiation of Programs with Discrete Randomness

Gaurav Arya
Massachusetts Institute of Technology, USA
aryag@mit.edu

Moritz Schauer
Chalmers University of Technology, Sweden
University of Gothenburg, Sweden
smoritz@chalmers.se

$$\frac{d}{d\theta} \mathbb{E}_{p_{\theta}(x)}[f(x)] = \frac{d}{d\theta} \mathbb{E}_{p(\epsilon)}[f(g(\epsilon, \theta))] = \mathbb{E}_{p(\epsilon)} \left[\frac{df}{dg} \frac{dg}{d\theta} \right]$$

Common method for continuous rv's is the reparameterization trick

If
$$x \sim p_{\theta}(x) \rightarrow \text{rewrite } x = g(\epsilon, \theta) \text{ with } \epsilon \sim p(\epsilon)$$

Separate parameters from stochasticity

Example:

$$x \sim \mathcal{N}(\mu, \sigma) \rightarrow x = \epsilon * \sigma + \mu \text{ with } \epsilon \sim \mathcal{N}(0, 1)$$

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$\mathbb{E}[b] = \int 1_{[\omega > 1-p]} p(\omega) d\omega = \int_{1-p}^{1} d\omega$$

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$\mathbb{E}[b] = \int 1_{[\omega > 1 - p]} p(\omega) d\omega = \int_{1 - p}^{1} d\omega$$

Standard AD on Monte Carlo expectation of this program would still be wrong

$$grad_p\left(\frac{1}{N}\sum_{i}[1\ if\ (\omega_i > 1 - p)\ else\ 0]\right) = 0$$

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$\mathbb{E}[b] = \int 1_{[\omega > 1-p]} p(\omega) d\omega = \int_{1-p}^{1} d\omega$$
Param. dependence in integration bounds

Correct derivative must account for boundary dependence → Leibniz Rule

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$x \sim Bernoulli(p) \rightarrow \begin{cases} \omega \sim Uniform[0,1] \\ x = \begin{cases} 1 & if \ \omega > 1-p \\ 0 & Otherwise. \end{cases}$$

$$\frac{d}{d\theta} \mathbb{E}_{p_{\theta}}[f(x)] = \mathbb{E}_{p_{\theta}}[\delta + \beta(y - x)]$$

The weight β accounts for the derivative of the probability of a jump in program

Equivalently, the weight accounts for the boundary derivative

In many cases: $\beta = \frac{\partial_{\theta} CDF_{\theta}(X(\theta))}{PDF_{\theta}(X(\theta))}$

Correlated paths → low variance

O(1) unbiased forward mode AD

Are these methods useful?

Toy Shower

Simplified particle shower: Including Energy loss and splitting

Design parameter:
Radial distance of material

Design goal:
Specify average shower depth

Toy Shower

Simplified particle shower: Including Energy loss and splitting

Design parameter:
Radial distance of material

Design goal:
Specify average shower depth

Dedicated implementation of Stochastic AD → Can generate "alternative showers"

Example Optimization

Gradients are noisy but in right direction (on average) → optimization works!

Comparisons

Both score function and Stochastic AD have reasonable variance gradients

Much to explore on how to couple primal & alternative programs to lower variance

Summary

Programs with discrete stochasticity are all over HEP

Discrete stochasticity is a problem for differentiation, but expected value of these programs (which is what we want anyway) may be differentiable

Variety of tools can potentially handle this, like score function or recent exciting work on Stochastic AD.

In a toy shower, we could successfully differentiate the program and perform optimization...

- Proof of principle... we may be able to scale this up!
- Still much work on reducing gradient variance

Backup

Differentiable Programming

Automatic differentiation super-charges code:

Can compute gradients of numeric programs

→ Major enabler of ML

Differentiable programming applied to programs that are not (fully) NNs

→ powerful way to combine physics &ML


```
def f(x):
    theta = 0.5
    b = bernoulli(theta)
    g = x*x
    return g+b
```

AD Gradient: $grad(f(x_i))$

Expected value: E[f(x)]

True gradient: $\nabla_x E[f(x)]$


```
def simulate(theta):
    p = sigmoid(theta)
    x = bernoulli(p) #0 or 1
    if x == 0:
        eval = sin(theta)
    else:
        eval = cos(theta)
    return eval
```

```
def program(theta):
    p = sigmoid(theta)
    x1 = bernoulli(p) #0/1
    x2 = bernoulli(p) #0/1
    eval = x1 + x2 # 0, 1 or 2
    return eval
```



```
def simulate(t, 0) {
    t' = propagate(t)
    dointeract ~ p(interact | material(x,y,z | 0))
    if dointeract:
        hits.append([x,y,z])
        dosplit ~ p(split|t')
        if dosplit:
             t1,t2 = split(t')
             simulate(t1), simulate(t2)
        else:
             E = (1-\alpha) E // energy loss
             simulate(t')
```