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2Detector Design Optimization

min
!
𝔼 𝑓(𝑥, 𝜙) = min

!
∫ 𝑓 𝑥, 𝜙 𝑝! 𝑥 𝑑𝑥

Theory Simulation Analysis / 
Design Objective

Design 
RatingEvents

Design 
Parameters



3Detector Design Optimization

Design Objective

Realizations of 
measurements:
E.g. Simulations

Design Parameters

Probability to see a 
measurement:
E.g. Interaction and 
detection probability

min
!
𝔼 𝑓(𝑥, 𝜙) = min

!
∫ 𝑓 𝑥, 𝜙 𝑝! 𝑥 𝑑𝑥



4Detector Design Optimization

min
!
𝔼 𝑓(𝑥, 𝜙) = min

!
∫ 𝑓 𝑥, 𝜙 𝑝! 𝑥 𝑑𝑥

Theory Simulation Events Analysis / 
Design Objective

Design 
Rating

Design 
Parameters

Hope to use Automatic Differentiation
and gradient-based optimization

∇?



5A Problem: Discrete Random Variables & Choices
Discrete random variables and discrete choices are all over HEP

Branching / Showering Processes Clustering Algorithms



6Programs with Discrete Randomness

Bernoulli parameter 𝜃 
depends on 𝑥

𝑓 𝑥 = 𝑥! + 𝑏 𝑏~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃 = sin!(2𝑥))



7Gradients of Expected Values

Even if a program contains discrete randomness, expected value 
of the program may be smooth and have a well-defined derivative

Simple example:

𝔼 𝑓 𝜃 = 𝔼!~#$%&(() 𝑏 = 𝜃 

∇(𝔼 𝑓 𝜃 = 1 



8AD in Programs with Discrete Randomness

AD Gradient: 𝑔𝑟𝑎𝑑(𝑓6(𝑥))

True gradient: ∇7𝐸[𝑓 𝑥 ]



9AD in Programs with Discrete Randomness

Standard AD tools don’t know 
how to handle discrete 
randomness that depends on 
the parameter of differentiation

We need another approach



10Derivatives for Discrete Randomness

Score 
Functions Stochastic AD Surrogates Gradient-Free 

Methods

Bayesian Optimization, 
Genetic Algorithms, …

Do Some Work, 
Get Better Derivatives

Approximate 
Derivatives

Don’t Use 
Derivatives

HEP Example:
Surrogates for 
SHiP magnet design

Figure credit: C. Fanelli

BO for EIC Design

MK, et al. 2002.04632

Smoothing / 
Relaxations

Example:
Differentiable 
ranking and sorting

2002.08871

https://arxiv.org/abs/2002.04632
https://arxiv.org/abs/2002.08871


11Score Functions / REINFORCE

Gradient estimator used in 
Reinforcement Learning

Works with discrete 𝑥 and even 
non-differentiable 𝑓(⋅)

Requires tracking probabilities 
log 𝑝!(𝑥) throughout program

∇(𝔼*!(+) 𝑓 𝑥 = 𝔼*!(+) 𝑓 𝑥 ∇( log 𝑝((𝑥)

AlphaStar Vinyals et al. 2019

https://www.nature.com/articles/s41586-019-1724-z


12Stochastic AD

Recently, Arya et al. extended fwd-mode AD to discrete-stochastic environments

𝑑
𝑑𝜃

𝔼*! 𝑓 𝑥 = 𝔼*! 𝛿 + 𝛽 𝑦 − 𝑥

2210.08572

Importantly, this includes a composition rule 
for how to combine weights 𝛽 step-by-step 
along the computation chain

Standard AD Weight Alternative value of rv

https://arxiv.org/abs/2210.08572


13Quick Aside: Reparameterization Trick

Common method for continuous rv’s is the reparameterization trick 

        If 𝒙~𝒑𝜽(𝒙) →  rewrite 𝒙 = 𝒈(𝝐, 𝜽)  with 𝝐~𝒑(𝝐)

Separate parameters from stochasticity

Example: 
   𝑥~𝒩 𝜇, 𝜎     →     𝑥 = 𝜖 ∗ 𝜎 + 𝜇   with 𝜖~𝒩 0,1

𝑑
𝑑𝜃

𝔼*!(+) 𝑓 𝑥 =
𝑑
𝑑𝜃

𝔼*(,) 𝑓 𝑔 𝜖, 𝜃 = 𝔼*(,)
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝜃



14Intuition
Can use the inversion method to reparameterize discrete random variables

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1

Arya et al. 2210.08572

→

https://arxiv.org/abs/2210.08572


15Intuition
Can use the inversion method to reparameterize discrete random variables

𝔼 𝑏 = 81 -./0* 𝑝 𝜔 𝑑𝜔 = 8
/0*

/
𝑑𝜔

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

→



16Intuition
Can use the inversion method to reparameterize discrete random variables

𝔼 𝑏 = 81 -./0* 𝑝 𝜔 𝑑𝜔 = 8
/0*

/
𝑑𝜔

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

Standard AD on Monte Carlo expectation of this program would still be wrong

𝑔𝑟𝑎𝑑=
1
𝑁
Q
6

[1	𝑖𝑓 𝜔6 > 1 − 𝑝 	𝑒𝑙𝑠𝑒	0] = 0

→



17Intuition
Can use the inversion method to reparameterize discrete random variables

𝔼 𝑏 = 81 -./0* 𝑝 𝜔 𝑑𝜔 = 8
/0*

/
𝑑𝜔

Correct derivative must account for boundary dependence → Leibniz Rule

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

Param. dependence 
in integration bounds

→



18Intuition
Can use the inversion method to reparameterize discrete random variables

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

Output

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1

Arya et al. 2210.08572

→

https://arxiv.org/abs/2210.08572


19Intuition
Can use the inversion method to reparameterize discrete random variables

𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝜔~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1
	

𝑥 = 	G1	 𝑖𝑓	𝜔 > 1 − 𝑝
0	 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.	

Output

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1

𝑋 𝑝 + 𝜖 − 𝑋(𝑝)

Arya et al. 2210.08572

→

https://arxiv.org/abs/2210.08572


20Stochastic AD

𝑑
𝑑𝜃

𝔼*! 𝑓 𝑥 = 𝔼*! 𝛿 + 𝛽 𝑦 − 𝑥

The weight 𝛽 accounts for the derivative of 
the probability of a jump in program

Equivalently, the weight accounts for the 
boundary derivative

In many cases: 𝛽 = B!CDE! F G
HDE! F G

Output

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1

𝑋 𝑝 + 𝜖 − 𝑋(𝑝)

Arya et al. 2210.08572

https://arxiv.org/abs/2210.08572


21Automatic Differentiation

Pruning follows one alternative path

Steps

State space

X(p+ ")(!2)

Smoothing flattens
onto primalUncoupled path

Primal x = X(p)(!1)
y ⇠ Y |X(p) = x

Correlated paths → low variance

𝒪(1) unbiased forward mode AD

Arya et al. 2210.08572

https://arxiv.org/abs/2210.08572
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Are these methods useful?



23Toy Shower
Simplified particle shower:
Including Energy loss and splitting

Design parameter:
Radial distance of material

Design goal:
Specify average shower depth



24Toy Shower
Simplified particle shower:
Including Energy loss and splitting

Design parameter:
Radial distance of material

Design goal:
Specify average shower depth

Dedicated implementation of 
Stochastic AD 
→ Can generate “alternative showers”



25Example Optimization

Gradients are noisy but in right direction (on average) → optimization works!

Target



26Comparisons
Both score function and Stochastic AD have reasonable variance gradients

Much to explore on how to couple primal & alternative programs to lower variance



27Summary
Programs with discrete stochasticity are all over HEP

Discrete stochasticity is a problem for differentiation, 
but expected value of these programs (which is what we 
want anyway) may be differentiable

Variety of tools can potentially handle this, like score 
function or recent exciting work on Stochastic AD. 

In a toy shower, we could successfully differentiate the 
program and perform optimization… 
• Proof of principle… we may be able to scale this up!
• Still much work on reducing gradient variance
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Backup



x

29Differentiable Programming
Automatic differentiation super-charges code:
• Can compute gradients of numeric programs

Differentiable programming applied to 
programs that are not (fully) NNs
→ powerful way to combine physics &ML

Major enabler of ML→



30AD in Programs with Discrete Randomness

AD Gradient: 𝑔𝑟𝑎𝑑(𝑓(𝑥6))

Expected value: 𝐸[𝑓(𝑥)]

True gradient: ∇7𝐸[𝑓 𝑥 ]



31Programs with Discrete Randomness



32Toy Shower


