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Differential cross section

known from QFT





Total cross section

dσ ∼ pdf(x) ⋅ |ℳ(x) |2 ⋅ dΦ

σ = ∫Φ
dσ

Exact sampling ensured

by known likelihood 


↓

better model


=

faster sampling

Monte Carlo integration

and sampling from


differential cross section

↓


accelerate with

deep generative models

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

LHC simulation chain



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Monte Carlo integration



Normalizing Flow

log pθ(x) = log pZ(Gθ(x)) + log ∂Gθ(x)
∂x

xz

Sampling

Training

G−1(z)

G(x)

Chain of invertible, learnable transformations with

exact likelihood from change of variables formula

[2001.05478, 2001.05486, 2001.10028,2005.12719, 2112.09145]



Are there problems with flows?



Topological obstruction
Lemma

Any bijective mapping  is a homeomorphism and preserves the 
topological structure of the input space. (Younes (2010), Dupon et al. [1904.01681])  

G(z)



Topological obstruction
Lemma

x = G−1(z)

z = G(x)

X

pZ(z)

Z

pX(x)

Any bijective mapping  is a homeomorphism and preserves the 
topological structure of the input space. (Younes (2010), Dupon et al. [1904.01681])  

G(z)



Avoiding the bottleneck

Neural Multi-channel: 
one map for each mode

I = ∑
i ⟨αi(x, ϕ) f(x)

gi(x, θ) ⟩
x∼gi(x,θ)

MADNISELSA

[2212.06172][2305.07696]

Truth Baseline Laser AugFlow

Truth Baseline Laser AugFlow
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https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2305.07696


Enhanced Latent Spaces
ELSA



Truth Baseline Laser AugFlow

Truth Baseline Laser AugFlow

G

Augment

ELSA — Basic functionalities

SurVAE [2007.02731], AugFlows [2002.07101, 2002.09741]



Truth Baseline Laser AugFlow

Truth Baseline Laser AugFlow

Augment

ELSA — Basic functionalities

Truth Baseline Laser AugFlow
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Truth Baseline Laser AugFlow

Truth Baseline Laser AugFlow

Augment

ELSA — Basic functionalities

Truth Baseline Laser AugFlow
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Toy examples

Truth Baseline Laser AugFlow



Truth Baseline Laser AugFlow

Toy examples



LHC example — W + 3 jets
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Neural Importance Sampling
MadNIS



MadNIS — Basic functionality

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)



I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Latent space z

Channel i

⟨αi(x) f(x)
gi(x) ⟩

Normalizing 
Flow i

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Basic functionality



Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

Analytic channel 
mapping 2

Analytic channel 
mapping k

⟨α2(x′ ) f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ ) f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality



MadNIS — Overview

Neural 
Channel 
Weights

Buffered 
Training

Symmetries 
between 
channels

VEGAS 
Initialization

Normalizing 
Flow

Trainable 
Rotations

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS
Stratified 

Sampling/ 
Training

Overflow 
Channels

Conditional 
flows
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Unweighting efficiency improved

up to factor ~10 compared to VEGAS
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LHC example II — W + 2 jets
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Process has small interference terms

→ no significant improvement from trained channel weights

Otherwise similar to results for VBS
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Take-home message

Summary and Outlook

• Fast and precise predictions with 
ML-based simulations

Future exercises

• Account for multi-modal distributions with 
modfied latent spaces or multi-channel flow

ℒ
Theory Shower EventsHard process Hadronization Detectors

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

5@

• Normalizing flows provide statistically 
well-defined likelihoods for inference

• Full integration of MadNIS into 
standard tools → MadGraph,….

https://arxiv.org/abs/2203.00057
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• More details in our Snowmass report
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Summary and Outlook

• Flows (+ Transformers) provide statistically 
well-defined likelihoods for inference

Summary

• DGMs provide fast and precise simulations

• Account for uncertainties with 
Bayesian neural networks

ℒ
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5@Future exercises

• Stay tuned for many other ML4HEP applications

• More details in our Snowmass report

• Full integration of MadNIS into 
standard tools → MadGraph,….

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

https://arxiv.org/abs/2203.00057

