MadNIS and ELSA

3'Y MODE Workshop
Ramon Winterhalder — UCLouvain

T

/S



LHC simulation chain

Theory Hard process Shower Hadronization Detectors
g N ] ":_‘i_
’, N




LHC simulation chain
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How can we prevent MC event generation from
becoming a bottleneck in future LHC runs?
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LHC simulation chain

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Differential cross section
known from QFT

do ~ pdf(x) - | #(x)|* - d®

Total cross section

0=J do
0




LHC simulation chain

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Differential cross section Monte Carlo integration

known from QFT and sampling from
do ~ pdf(x) - | M(x)|* - dD differential cross section

Total cross section !

o = J do accelerate with
@ deep generative models




LHC simulation chain

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Differential cross section Monte Carlo integration Exact sampling ensured
known from QFT and sampling from by known likelihood
do ~ pdf(x) - | A (x)|* - d® differential cross section > |
Total cross section ! hetter model

o = J do accelerate with —
@ deep generative models faster sampling




Monte Carlo integration

[ = def(x)

Flat sampling:
inefficient



Monte Carlo integration

[ = def(x)

Flat sampling: Importance sampling:
inefficient find g close to f
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Normalizing Flow

Chain of . learnable transformations with
from change of variables formula

0Gy(x)
ox

log py(x) = log pz(Gy(x)) + log

[2001.05478, 2001.05486, 2001.10028,2005.12719, 2112.09145]

Sampling

Training

G(x)



Are there problems with flows?



Topological obstruction

Any G(z) is a homeomorphism and preserves the
topological structure of the input space. (Younes (2010), Dupon et al. [1904.01681))



Topological obstruction

Lemma

Any bijective mapping G(z) is a homeomorphism and preserves the
topological structure of the input space. (Younes (2010), Dupon et al. [1904.01681))
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Avoiding the bottleneck

Neural Multi-channel:
one map for each mode

(%) [2212.06172]
I — 1\ "
Z <0h(x ¢) gi(x, (9) > 0 . _II'IH-H .
X~ 8K, . g gulls

l



https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2305.07696

ELSA

Enhanced Latent Spaces



ELSA — Basic functionalities

SurVAE [2007.02731], AugFlows [2002.07101, 2002.09741]



ELSA — Basic functionalities

DCTR [1907.08209]



ELSA — Basic functionalities

LASER [2106.00792]



Toy examples

Baseline
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LHC example — W + 3 jets

pp — WT + 3j (@14 TeV)
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LHC example — W + 3 jets

pp — WT + 3j (@14 TeV) pp — WT + 3j (@14 TeV)
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LHC example — W + 3 jets

pp — WT + 3j (@14 TeV) pp — WT + 3j (@14 TeV)
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Neural Importance Sampling



MadNIS — Basic functionality




MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings



MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

' '
Normalizing flow to

Fully connected network
refine channel mappings to refine channel weights




MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

Normalizing flow to Fully connected network
refine channel mappings to refine channel weights

Update simultanously with variance as loss function




MadNIS — Basic functionality

Phase space | Learned channel
d C RN - weight a;(x)

Analytic Channel

o Single channel ;

Normalizing
Flow i

Unit hypercube
U =10,11"




MadNIS — Basic functionality

Phase space 7 — X Learned channel
d Cc RY . weights @’(x)
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MadNIS — Overview

Basic functionality Improved multi-channeling
CI\Pl]eurall Normalizing Conditional Overflow
an?‘e Flow - flows Channels

eights

MadGraph MadEvent Symmetries Stratified
matrix channel ﬁetween Sampling/
elements mappings ‘ channels Training

Improved training

VEGAS Buffered Trainable

Initialization Training Rotations




LHC example | — VBS

Significant improvement
from trained channel weights
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VEGAS Flow Flow VFlow VFlow VFlow VFlow
fixed a trained o fixed ¢ trained « trained « trained o
Ra =29 Ra = 5.0

Flow Flow VFlow VFlow VFlow VFlow
fixed « trained « fixed a trained o trained a trained «
Ra=29 Ra=2>5.0

Unweighting efficiency improved
up to factor ~10 compared to VEGAS



LHC example ll — W + 2 jets

Process has small interference terms
— no significant improvement from trained channel weights
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Otherwise similar to results for VBS



Summary and Outlook

Take-home message Future exercises

 Fast and precise predictions with * Full integration of MadNIS into
ML-based simulations standard tools & MadGraph,....

 Normalizing flows provide statistically * Make everything run on the GPU and
well-defined likelihoods for inference differentiable (vadJax - Heinrich et al. [2203.00057))

* Account for multi-modal distributions with
modfied latent spaces or multi-channel flow

Hadronization Detectors



https://arxiv.org/abs/2203.00057

Summary and Outlook

m- SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Future exercises

Anja Butter’2, Tilman Plehn’, Steffen Schumann®, Simon Badger?, Sascha Caron®:°
Kyle Cranmer”-8, Francesco Armando Di Bello?, Etienne Dreyer!?, Stefano Forte!!,
Sanmay Ganguly'?, Dorival Goncalves'?, Eilam Gross'?, Theo Heimel’, - - .
Gudrun Heinrich'4, Lukas Heinrich!®, Alexander Held'®, Stefan Hoche!?, ¢ FLI I I [ nteg ratl on Of M ad N IS | ntO

Jessica N. Howard'8, Philip Ilten'?, Joshua Isaacson!”, Timo JanRen®, Stephen Jones??,

Marumi Kado®2!, Michael Kagan??, Gregor Kasieczka?3, Felix Kling?4, Sabine Kraml?®, Stan d ard tOO I S M ad G ra p h LLLL

Claudius Krause?®, Frank Krauss2?, Kevin Kroninger?’, Rahool Kumar Barman!3,

Michel Luchmann!, Vitaly Magerya!4, Daniel Maitre2°, Bogdan Malaescu?,

Fabio Maltoni®®2?, Till Martini®°, Olivier Mattelaer?®, Benjamin Nachman3!32, ® M ake eve ryt h | N g run on th e G P U an d

Sebastian Pitz!, Juan Rojo®*3, Matthew Schwartz**, David Shih?®, Frank Siegert™,

Roy Stegeman!?, Bob Stienen’, Jesse Thaler', Rob Verheyen®, differentiable (MadJax - Heinrich et al. [2203.00057))

Daniel Whiteson!®, Ramon Winterhalder?®, and Jure Zupan!?

Ab * More details in our Snowmass report
stract

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications
of modern machine learning to event generation and simulation-based inference, includ-
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.



https://arxiv.org/abs/2203.00057

Summary and Outlook

N  HEP ML Living Review ® Q Search
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A Living Review of Machine Learning for Particle Physics

Modern machine iearnuing technigues, including deep leaming, is raoidly being applied, adapted, and developed for high erergy
physics. The gnal of this document i= te provide a nearly camprehensive list of citations for thase developing ana applying these
approaches to excerimental, phenomenoloqical, or theoretical analyses. As & living document, it will be upasted as often as

possible to incorporate the latest developments. A list of preper (unchanging) revieves can be found within, BPapers are grouged

into a small set of tapics to be as useiul as possibic. Suggestions are mast welcome.
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Future exercises

* Full integration of MadNIS into

standard tools =+ MadGraph,....

 Make everything run on the GPU and

differentiable (MadJax - Heinrich et al. [2203.00057))

* More details in our Snowmass report

e Stay tuned for many other ML4AHEP applications
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