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A High Level Overview
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• Obtain dependable, highly performant energy 
reconstruction scheme


• Use the optimal energy reconstruction to design 
the detector 


• To do this, we aim to make the reconstruction 
itself differentiable in the detector configuration.
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Electron Ion Collider
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• Collide Electron and 
Protons + Ions

- 18 GeV Electrons 

- 275 GeV Protons/Ions

-  GeV


• To be built an Brookhaven 
national lab, Long Island


• Provide access to regions 
in the nucleon/nuclei 
where their structure is 
dominated by gluons

s = 89

Many detectors are still at the design stage
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Forward Hadronic Calorimeter
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Case Study: Optimization of forward HCAL in ePIC detector

Calorimeter Insert

HCAL

ECAL

● Simulated Data (Information in Wiki)
○ Particle: e-, 𝞹+, neutrons
○ Polar angle:  𝝷 = 17 deg, 10< 𝝷 < 30 deg
○ Calorimeter Configuration: HCAL  only, 

ECAL in front of HCAL
○ Continuous and discrete in energy

● Saved models are found in Wiki with dataset 
used

p e−

• The incoming proton/ion has a significantly larger kinetic energy 
than the incoming electron.

•Most of the hadrons are emitted in the same direction as the 

hadron beam (“forward” direction)

• If we want to measure jets, we need a granular, forward calorimeter

HCal

ECal

275 GeV 18 GeV
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Forward HCal
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•High-granularity iron-scintillator 
calorimeter 


•Forward region, 1.2 < η < 3.5 


•Sampling calorimeter comprised of 0.3 cm 
scintillator tiles sandwiched between 2.0 
cm steel plates

Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:
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FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96
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Detector Simulation and Reconstruction
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• Geant4 Simulation of single  showers

• Standalone DD4Hep sim. of detector similar to ePIC HCAL

• 

•  Cell Hits per shower, point clouds 
• Establish a model to predict  given cell information

• Condition model on position of longitudinal segmentation

π+

1 < PGen. < 125 GeV/c
𝒪100 − 1000

PGen.

3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96

2

66666666664

Eh
1 Xh

1 Y h
1 Zh

1 1
Eh

2 Xh
2 Y h

2 Zh
2 1

...
...

...
...

...
Eh

n Xh
n Y h

n Zh
n 1

Ee
1 Xe

1 Y e
1 Ze

1 0
...

...
...

...
Ee

n Xe
n Y e

n Ze
n 0

3

77777777775



Fernando TA 8/2/23Fernando TA 8/2/23

Deep Sets
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1. Transform inputs into some latent space

2. Destroy the ordering information in the latent space (+, )

3. Transform from the latent space to the final output

μ

Permutation Invariant 
Works well with point clouds 

A GNN without edges arXiv: 1703.06114
arXiv:1810.05165
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https://arxiv.org/abs/1703.06114?ref=inference.vc
https://arxiv.org/abs/1810.05165
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Deep Sets
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Goal: 
 Energy 

Regression
π+{E 
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Model uses energy and position information for energy regression



Fernando TA 8/2/23Fernando TA 8/2/23

Energy Regression Results
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FIG. 3. Hcal performance in terms of resolution (left) and energy scale (right) using deep set and Strawman for energy

reconstruction. 1D input features to deepset significantly improves the calorimeter performance compared to Strawman.

Increasing the input feature help in energy regression, 4D cell hits (E, Z, X, and Y) is the highest level of information we are

feeding to network to get the optimal performance. This setup has ePIC ECal is placed in front of HCal, and ⇡+
between 1 -

130 GeV were generated with 10
� < ✓polar < 30

�
.

FIG. 4. Improvement in energy resolution with software compensation technique. AI based software compensation technique

with 4D input features (green), the optimal one, outperform the modern form of human-made algorithm employed in CALICE

results [1] (red). The blue curve is Strawman for our simulated data while the orange one is CALICE test-beam data with

Strawman approach. For this analysis, ECal was place in front of HCal and ⇡+
are generated between 1 < ETrue < 130 and

10
� < ✓polar < 30

�
.

VI. CONCLUSION AND OUTLOOK131

We have benchmarked our hadronic calorimeter simulation setup and design against the test-beam data of CAL-132

ICE [1], similar calorimeter by design calorimeter. For validation purpose, simple traditional Strawman approach,133

sum of cell hit energy weighted by sampling fraction, was used for energy reconstruction.134

We have adopted AI based algorithms which takes the cell level information (E, X, Y, and Z) to regress the energy.135

We demonstrated that AI based deep set algorithm is simple to adopt and e�cient compared to modern human-136

made algorithm. In contrast to human-made algorithm, deep set algorithm automatically determines the appropriate137

weights for electromagnetic and hadronic showers learning from shower shapes provided through cell hit information.138

Baseline

5

FIG. 3. Hcal performance in terms of resolution (left) and energy scale (right) using deep set and Strawman for energy

reconstruction. 1D input features to deepset significantly improves the calorimeter performance compared to Strawman.

Increasing the input feature help in energy regression, 4D cell hits (E, Z, X, and Y) is the highest level of information we are

feeding to network to get the optimal performance. This setup has ePIC ECal is placed in front of HCal, and ⇡+
between 1 -

130 GeV were generated with 10
� < ✓polar < 30

�
.

FIG. 4. Improvement in energy resolution with software compensation technique. AI based software compensation technique

with 4D input features (green), the optimal one, outperform the modern form of human-made algorithm employed in CALICE

results [1] (red). The blue curve is Strawman for our simulated data while the orange one is CALICE test-beam data with

Strawman approach. For this analysis, ECal was place in front of HCal and ⇡+
are generated between 1 < ETrue < 130 and

10
� < ✓polar < 30

�
.

VI. CONCLUSION AND OUTLOOK131

We have benchmarked our hadronic calorimeter simulation setup and design against the test-beam data of CAL-132

ICE [1], similar calorimeter by design calorimeter. For validation purpose, simple traditional Strawman approach,133

sum of cell hit energy weighted by sampling fraction, was used for energy reconstruction.134

We have adopted AI based algorithms which takes the cell level information (E, X, Y, and Z) to regress the energy.135

We demonstrated that AI based deep set algorithm is simple to adopt and e�cient compared to modern human-136

made algorithm. In contrast to human-made algorithm, deep set algorithm automatically determines the appropriate137

weights for electromagnetic and hadronic showers learning from shower shapes provided through cell hit information.138

Baseline

σ(
E p

re
d/

E G
en

)

(E
pr

ed
/E

G
en

)

Energy resolution well below baseline clusterer

Energy scale within 1% of truth for almost all energies

Cell Position information improves resolution

Overall, very dependable energy reconstruction model
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FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
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code represents deposited energy in term of EMIP .
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Data Processing for Conditioning
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• Each point is a local node with information 

• The group of points making up the shower can be assigned values 

called global nodes 
- Sum of all cell energies in the event 
- position of longitudinal boundaries


• For every event, 5 random configurations of layers are created

xi

HCal

↔ ↔

↔
↔
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Conditioning on Longitudinal 
Segmentation
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The position of middle two layers are added as global features 
Reduce the local node features ( for now ) 
For each event, 5 random configurations are used 
110 unique configurations, 2.4M Events
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σE = f(z1, z2, ⃗x)
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We have a differentiable function for energy resolution 
conditioned on detector parameters

σE = σ(Epred/EGen)

Layer positon [mm] Layer positon [mm]

 GeV/cPGen. < 10.0  GeV/cPGen. > 50.0
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Conclusions and Next Steps
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• We have our first energy regression 
conditioned on detector parameters


• Compare gradients standard tools: auto_diff 
on 


• Explore conditioning with additional layers


• Re-condition with higher dimensional  data

σE = f(z1, z2, ⃗x)

σE = f(z1, z2, ⃗x)
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Extra Slides
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Deep Sets Architecture
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Energy, Z, X, Y Energy, Z, X, Y
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GNN Model
• Graph Nets library by DeepMind


- Highly customizable graph blocks

- Lightweight 

- Not actively developed or widely 

used FullGNN Block

Model

ℒ = 𝛼ℒ𝑅𝑒𝑔 + (1 − 𝛼)ℒ𝐶𝑙𝑎𝑠𝑠

LLNL-
PRES-836353

16
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Overall Scale of effect
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Train

Inference

Train

Inference

MSE = 0.030856214

MSE = 0.033682253
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ΔMSE 0.003
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Longitudinal Segmentation
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Layer 1 Layer 2

Z Position (mm) Z Position (mm)
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MSE plots
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Model provides  MSE = f(z1, z2, ⃗x)
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MSE Loss Plot
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1.0 < E < 125 GeV

Layer Positon [mm]

 GeV/c1.0 < PGen. < 125.0


