Conditional Energy Regression

Fernando Torales Acosta, Benjamin Nachman, Miguel Arratia, Kenneth Barish, Bishnu Karki, Ryan Milton, Piyush Karande, and Aaron Angerami

A High Level Overview

- Obtain dependable, highly performant energy reconstruction scheme
- Use the optimal energy reconstruction to design the detector
- To do this, we aim to make the reconstruction itself differentiable in the detector configuration.

Electron Ion Collider

- Collide Electron and Protons + Ions
 - 18 GeV Electrons
 - 275 GeV Protons/Ions
 - $-\sqrt{s} = 89 \text{ GeV}$
- To be built an Brookhaven national lab, Long Island
- Provide access to regions in the nucleon/nuclei where their structure is dominated by gluons

Many detectors are still at the design stage

Forward Hadronic Calorimeter

- The incoming proton/ion has a significantly larger kinetic energy than the incoming electron.
- Most of the hadrons are emitted in the same direction as the hadron beam ("forward" direction)
- If we want to measure jets, we need a granular, forward calorimeter

Figure Courtesy **eP**

Fernando TA 8/2/23 4

Forward HCal

- High-granularity iron-scintillator calorimeter
- Forward region, $1.2 < \eta < 3.5$
- Sampling calorimeter comprised of 0.3 cm scintillator tiles sandwiched between 2.0 cm steel plates

Figure Courtesy

Detector Simulation and Reconstruction

- Geant4 Simulation of single π^+ showers
- Standalone DD4Hep sim. of detector similar to ePIC HCAL
- $1 < P_{\text{Gen.}} < 125 \text{ GeV/}c$
- $\mathcal{O}100 1000$ Cell Hits per shower, **point clouds**
- ullet Establish a model to predict $P_{\mathrm{Gen.}}$ given cell information
- Condition model on position of longitudinal segmentation

Deep Sets

- 1. Transform inputs into some latent space
- 2. Destroy the ordering information in the latent space $(+, \mu)$
- 3. Transform from the latent space to the final output

Permutation Invariant
Works well with point clouds
A GNN without edges

arXiv: 1703.06114

arXiv:1810.05165

Deep Sets

Model uses energy and position information for energy regression

Fernando TA 8/2/23 8

Energy Regression Results

Energy resolution well below baseline clusterer Energy scale within 1% of truth for almost all energies Cell Position information improves resolution Overall, very dependable energy reconstruction model Data Processing for Conditioning

- Each point is a *local node* with information x_i
- The group of points making up the shower can be assigned values called *global nodes*
 - Sum of all cell energies in the event
 - position of longitudinal boundaries
- For every event, 5 random configurations of layers are created

Conditioning on Longitudinal Segmentation

The position of middle two layers are added as global features Reduce the local node features (for now) For each event, 5 random configurations are used 110 unique configurations, 2.4M Events

$$\sigma_E = f(z_1, z_2, \vec{x})$$

$$\sigma_E = \sigma(E_{\text{pred}}/E_{\text{Gen}})$$

We have a differentiable function for energy resolution conditioned on detector parameters

Conclusions and Next Steps

 We have our first energy regression conditioned on detector parameters

$$\sigma_E = f(z_1, z_2, \vec{x})$$

- Compare gradients standard tools: *auto_diff* on $\sigma_E = f(z_1, z_2, \vec{x})$
- Explore conditioning with additional layers
- Re-condition with higher dimensional data

Extra Slides

Deep Sets Architecture

GNN Model

- Graph Nets library by DeepMind
 - Highly customizable graph blocks
 - Lightweight
 - Not actively developed or widely

used FullGNN Block

LLNL-PRES-836353

Fernando TA 8/2/23 16

Overall Scale of effect

MSE = 0.030856214

ΔMSE 0.003

MSE = 0.033682253

Longitudinal Segmentation

MSE plots

Model provides $MSE = f(z_1, z_2, \vec{x})$

MSE Loss Plot

