

The GENETIS Project: optimizing detector designs for science outcomes Amy Connolly for the GENETIS Collaboration July 25, 2023

GENETIS (Genetically Evolving NEuTrIno teleScopes

- Goal: optimize detector designs with science outcomes as measure of fitness
- Started 2017 based at OSU, student-driven
- Started with improving antenna designs for neutrino telescopes using genetic algorithms (GAs), not limited to antennas, neutrinos, or GAs
- Inspired by *previous* NASA GA-designed antenna:

Antenna designed in 2006 for NASA ST5 spacecraft using evolutionary algorithms

Student-driven

Julie Rolla JPL Scientist

Alex Machtay grad student

Bryan Reynolds OSU PhD

Dennis Calderon-Madera Bridge student

Ben Sipe gap

Jacob Weiler undergrad

Dylan Wells undergrad

Ryan Debolt

Jack Tillman, undergrad

Lydon Bindall undergrad

Senior Collaborators

Ezio Melotti Software Engineer

Prof. Amy Connolly Neutrino astrophysics PI and GENETIS cofounder

Kai Staats Univ. of Arizona Biosphere 2 (GENETIS co-founder)

Prof. Wolfgang Banzhaf, Endowed Chair in Genetic Programming at Michigan State University

Prof. Chi-Chih Chen Electrical and Computer Engineering ElectroScience Lab

Christian Miki Scientific Instrument Physicist/Engineer University of Hawaii

4

Remcom, OSU's Center for Design and Manufacturing Excellence (CDME) enthusiastic partners

Why Genetic Algorithms (GAs)

- Genetic algorithms part of evolutionary computation, use strategies inspired by biological evolution
- Choice inspired by NASA antenna design
- Behavior is transparent
- Optimizer has many parameters to explore
- Biological connection: intuitive, and fun
- Other algorithms, e.g., swarm, neural networks, explored in the future

Parameters of the GA

- Parent selection
 - Roulette
 - Tournament
- Genetic operators
 - Mutation
 - Crossover
 - Reproduction
 - Injection

Illustration of roulette selection towardsdatascience.com

GENETIS main loop (any project)

The Loop:

First major sub-project

- Antennas for ultrahigh energy (>10¹⁸
 eV) neutrino detection in ice
- Test case: Askaryan Radio Array (ARA) at South Pole

First major sub-project

- Begin with a bicone-like design
- Fitness score: neutrinos detected by ARA using the evolved "individual"
- "genes" lengths, inner radii, opening angles

GENETIS main loop (any project)

The Loop:

GENETIS main loop: radio v project

• Automated - no human intervention in the loop itself

 Interfaces stages running many different types of code including GUIs

Antenna optimization

Julie Rolla Alex Machtay

• First results: 10% improvement over ARA bicones

GENETIS antenna optimization

arXiv:2112.03246 Submitted to PRD, final stages of review

Rainbow plot

Fittest have common design parameters

How they detect more neutrinos

Dennis Calderon-Madera

How they detect more neutrinos

How they detect more neutrinos

ORF RF Or

Dennis Calderon-Madera

Sides curved - linear and quadratic terms

19

Longer side ~19 cm

Building best antenna (Gen 29, Ind 87) with OSU's CDME

Next steps for in-ice

- Evolve HPol antennas too
- Evolve antenna parameters, array geometries together
- Important because ice birefringence causes signal polarizations to rotate
 - Phys.Rev.D 105 (2022) 12, 123012
 - NSF funding for this (Connolly PI)

Evolving beam patterns

- Evolve antenna beam pattern (gains vs. direction)
 - nevermind how we'd build the antenna

Evolving beam patterns

 Assess room for improvement

Could assess ideal response for any detector

Bryan Reynolds

PUEO

PUEO JINST 16 (2021) 08, 08

GENETIS PUEO loop The Loop:

Julie Rolla Alex Machtay

Dylan Wells

Ryan Debolt

Julie Rolla JPL Scientist

Nebulous sub-project

- trl0 funding from JPL (comms, tracking, radar)
- No preconceived idea (bicone, horn)
- Start from scratch, build from LEGOs (genetic algorithm → genetic program)
- First step: evolve to a target shape
- Initial results to be published in JPL's Interplanetary Network (IPN)

Optimizing the parameters of GA itself

- Use toy program that is faster than main loop
 - Fitness: likeness to predetermined shape
 - Test frequency of use of selection methods

Ryan Debolt

31

Summary

- Developed first genetic algorithm designing antennas for science outcome
- Generalizable beyond antennas
- Generalizing to different projects
- Training ground, launching pad for students: problem solving, working in groups
- Welcome new collaborators send a student to our zoom working meetings!

Backup slides

GENETIS (Genetically Evolving NEuTrIno teleScopes)

- GENETIS project started 2017 after OSU genetic algorithms (GAs) workshop
 - Inspired by *previous* NASA GA-designed antenna:

Antenna designed in 2006 for NASA ST5 spacecraft using evolutionary algorithms

GENETIS Mini-Collaboration Meeting April APS 2018

GENETIS:

- Student (largely undergraduate) -driven
- Fitness measure: 34 science outcome

GENETIS PUEO loop genes

Antenna Walls

- S: half side length of bottom of wall
 m: slope of outer wall
 H: max height of the outer wall
- Current Constraints:
 - S < 50cm H < 50cm
 - m = 1

Antenna Ridges

 x₀, y₀, z₀: initial points of inner part of the ridge

x_f, y_f, z_f: final points of inner part of the ridge β: curvature of the ridge

Binary gene for walls or not